首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Itoh T  Linn S 《DNA Repair》2005,4(12):1457-1462
p21(CDKN1A) is a critical regulator of cell cycle progression in response to DNA damage. There are conflicting conclusions as to whether p21(CDKN1A) levels increase or decrease after ultraviolet (UV)-irradiation and recently it was even reported to disappear entirely following 2.5-30 Jm(-2) of UV-irradiation in the presence of growth medium. The latter would suggest an alternative mechanism for cell cycle arrest after UV-irradiation, since p21(CDKN1A) induction has been considered to be the major mediator of p53-mediated cell cycle arrest after DNA damage. Using physiological UV doses based on cell-killing, we previously observed and here verify that low doses (1.2-6 Jm(-2)) induce p21(CDKN1A) immediately after UV-irradiation, though higher doses cause a latency during which p21(CDKN1A) levels remain fairly constant before increasing. As expected, p53 induction preceded p21(CDKN1A) induction at all doses. Thus, p21(CDKN1A) levels after low doses of UV-irradiation may be controlled in a p53-dependent manner without severe reduction. We propose that physiological relevant UV doses should be determined for each target cell type prior to studying UV-induced responses and that p21(CDKN1A) is indeed critical for cell cycle arrest in cells that survive UV-irradiation.  相似文献   

3.
4.
5.
Human chromosomal region 11p15.5, which is homologous to mouse chromosome region 7F5, is a well-known imprinted region. The CDKN1C/KCNQ1OT1 imprinted domain, which is one of two imprinted domains at 11p15.5, includes nine imprinted genes regulated by an imprinting center (IC). The CDKN1C/KCNQ1OT1 IC is a differentially methylated region of KCNQ1OT1(KCNQ1OT-DMR) with DNA methylation on the maternal allele and no methylation on the paternal allele. CDKN1C (alias p57KIP2), an imprinted gene with maternal expression, encoding a cyclin-dependent kinase inhibitor, is a critical gene within the CDKN1C/KCNQ1OT1 domain. In Beckwith-Wiedemann syndrome (BWS), approximately 50% of patients show loss of DNA methylation accompanied by loss of histone H3 Lys9 dimethylation on maternal KCNQ1OT-DMR, namely an imprinting disruption, leading to diminished expression of CDKN1C. In cancer, at least three molecular mechanisms--imprinting disruption, aberrant DNA methylations at the CDKN1C promoter, and loss of heterozygosity (LOH) of the maternal allele--are seen and all three result in diminished expression of CDKN1C. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain is involved in the development of both BWS and cancer and it changes the maternal epigenotype to the paternal type, leading to diminished CDKN1C expression. In this review, we describe recent advances in epigenetic control of the CDKN1C/KCNQ1OT1 imprinted domain in both humans and mice.  相似文献   

6.
7.
Larsson C  Ng CE 《Radiation research》2003,160(2):205-209
The mechanism of thermal radiosensitization is related to the inhibition of repair of radiation-induced DNA damage by heat. Due to the interaction of the gene p21/WAF1/CIP1 (now known as CDKN1A) with a variety of DNA repair proteins, its involvement in thermal radiosensitization was investigated. Two isogenetic human colorectal cancer cell lines with wild-type TP53 status were used. The 80S4 cell line was deficient in CDKN1A and the HCT116 cells were CDKN1A proficient. Both cell lines were significantly more sensitive to 44 degrees C than 42 degrees C heating (P < 0.01), and both cell lines expressed thermotolerance for heating times longer than about 2 h at the lower temperature. There were no significant differences in the X-radiation response of the two cell lines. Further, the two cell lines displayed similar cell survival levels after hyperthermia given before or after X radiation for both hyperthermia temperatures. Comparison of thermal enhancement ratios confirmed that there was no difference in the amount of thermal radiosensitization induced in the two cell lines. The induction and subsequent repair of DNA double-strand breaks, as measured by clamped homogeneous gel electrophoresis, was also the same in both cell lines. These findings strongly suggest that the gene CDKN1A does not play an important role in the expression of thermal radiosensitization.  相似文献   

8.
目的:验证CDKN1A是miR-93-5p直接调控的靶基因,阐明miR-93-5p可通过靶向CDKN1A促进人卵巢颗粒样肿瘤细胞系KGN的生长增殖.方法:选取我院2016年6月-2019年6月期间确诊的40例多囊卵巢综合征(PCOS)患者作为研究对象,qRT-PCR检测PCOS病变卵巢组织和病灶旁正常卵巢组织(对照)中...  相似文献   

9.
The highly conserved cellular degradation pathway, macroautophagy, regulates the homeostasis of organelles and promotes the survival of T lymphocytes. Previous results indicate that Atg3-, Atg5-, or Pik3c3/Vps34-deficient T cells cannot proliferate efficiently. Here we demonstrate that the proliferation of Atg7-deficient T cells is defective. By using an adoptive transfer and Listeria monocytogenes (LM) mouse infection model, we found that the primary immune response against LM is intrinsically impaired in autophagy-deficient CD8+ T cells because the cell population cannot expand after infection. Autophagy-deficient T cells fail to enter into S-phase after TCR stimulation. The major negative regulator of the cell cycle in T lymphocytes, CDKN1B, is accumulated in autophagy-deficient naïve T cells and CDKN1B cannot be degraded after TCR stimulation. Furthermore, our results indicate that genetic deletion of one allele of CDKN1B in autophagy-deficient T cells restores proliferative capability and the cells can enter into S-phase after TCR stimulation. Finally, we found that natural CDKN1B forms polymers and is physiologically associated with the autophagy receptor protein SQSTM1/p62 (sequestosome 1). Collectively, autophagy is required for maintaining the expression level of CDKN1B in naïve T cells and selectively degrades CDKN1B after TCR stimulation.  相似文献   

10.
Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cell physiology, but many of which have no known function. CDKN1A/p21 is an important inhibitor of the cell-cycle, regulator of the DNA damage response and effector of the tumor suppressor p53, playing a crucial role in tumor development and prevention. In order to identify a regulator for tumor progression, we performed an siRNA screen of human lncRNAs required for cell proliferation, and identified a novel lncRNA, APTR, that acts in trans to repress the CDKN1A/p21 promoter independent of p53 to promote cell proliferation. APTR associates with the promoter of CDKN1A/p21 and this association requires a complementary-Alu sequence encoded in APTR. A different module of APTR associates with and recruits the Polycomb repressive complex 2 (PRC2) to epigenetically repress the p21 promoter. A decrease in APTR is necessary for the induction of p21 after heat stress and DNA damage by doxorubicin, and the levels of APTR and p21 are anti-correlated in human glioblastomas. Our data identify a new regulator of the cell-cycle inhibitor CDKN1A/p21 that acts as a proliferative factor in cancer cell lines and in glioblastomas and demonstrate that Alu elements present in lncRNAs can contribute to targeting regulatory lncRNAs to promoters.  相似文献   

11.
12.
13.
14.
Interleukin 11 receptor alpha (Il11ra) null mice are infertile due to defective decidualization and abnormal trophoblast invasion. We have previously shown in these mice that downregulation of decidual proteinase inhibitors plays a role in uncontrolled trophoblast invasion. However, the decidua is abnormally smaller in pseudopregnant Il11ra null mice, where trophoblast invasion is not a factor. Here, we examined whether defective decidualization is due to dysregulation of key molecules involved in decidual cell growth and differentiation. We found a dramatic downregulation of cyclin D3 in Il11ra null mice. We also found that IL11 robustly stimulates the expression of cyclin D3 in cell culture. CDK4 and CDK6, known partners of cyclin D3, are not affected. Immunolocalization studies show absence of cyclin D3 in the mesometrial site and absence of differentiated polyploid cells in the antimesometrial site of Il11ra null mice. We also examined the expression of cell differentiation factors CDKN1A (p21) and CDKN1B (p27), and found that in both in vivo and cell culture the expression of CDKN1A (p21) but not CDKN1B (p27) is under the control of IL11. Another clear target of IL11 in the decidua is BIRC5 (Survivin), whose expression is repressed in the decidua of Il11ra null mice and stimulated by IL11 in cell culture. Taken together, these results provide, at least in part, an explanation for the defective small decidua of mice lacking the Il11ra gene, and reveal for the first time that cyclin D3, CDKN1A (p21), and BIRC5 (Survivin) are targets of IL11 in the decidua.  相似文献   

15.
16.
We have isolated the swine homologs of human CDKN2A and CDKN2B exon 2 sequences. As in the human and mouse genomes, the exon 2 sequences of these two genes present a high level of sequence homology and are tightly linked. Using fluorescence in situ hybridization, we have mapped swine CDKN2A and CDKN2B to chromosome 1q25. This confirms the comparative mapping data among man, mouse, and swine, showing a conserved synteny among chromosome segments 9p21, 4C3-C6, and 1q25, respectively.  相似文献   

17.
18.
CDKN4/p27Kip1 is a cyclin-dependent kinase (Cdk) inhibitor implicated in G1 phase arrest, which negatively regulates G1 phase progression in response to TGF, and might represent a tumor suppressor gene. We report here the chromosomal assignment of the human CDKN4 gene to chromosome 12p12.3 in close proximity to highly polymorphic microsatellite markers.  相似文献   

19.
Using confocal microscopy on immunofluorescence-stained cells, we have investigated the response of CDKN1A (p21), one of the key proteins involved in the DNA damage response pathway, after irradiation with accelerated lead or chromium ions. Each traversal of an accelerated ion leads to the formation of a single, bright focus of the CDKN1A protein in the nuclei of human fibroblasts within 2 min after irradiation at 4 degrees C. This immediate, localized CDKN1A response is specific for particle irradiation with a high linear energy transfer (LET), whereas X irradiation, after a period of induction, yields a diffusely spread pattern, in line with the differences in the microscopic dose deposition pattern of both radiation types. The particle-induced CDKN1A foci persist for several hours until they become diffuse and vanish. These findings suggest that CDKN1A accumulates at the sites of primary DNA damage, possibly mediated by the interaction with proteins involved in DNA repair. Here, for the first time, an immediate biological response confined to the radial extension of low-energy particle tracks ( approximately 1 micrometer) is directly visualized and correlated to ion traversals. This indicates that particle irradiation represents an ideal tool to study the processing of biological damage induced in defined subnuclear regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号