首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The INK4A/ARF locus on chromosome 9 is a tumor suppressor gene frequently mutated in human cancers. In order to study the effects of p14ARF expression in tumor cells, we constructed a recombinant adenovirus containing p14ARF cDNA (Adp14ARF). Adp14ARF infection of U2OS osteosarcoma cells which has wild type p53 and mutant p14ARF revealed high levels of p14 (ARF) expression within 24h. In addition, Adp14ARF-mediated expressing of p14 (ARF) was associated with increased levels of p53, p21, and mdm2 protein. Growth inhibition assays following Adp14ARF infection demonstrated that the growth of U2OS cells was inhibited relative to infection with control virus. Furthermore, TUNEL analysis as well as PARP cleavage assays demonstrated that Adp14ARF infection was associated with increased apoptosis in U2OS cell line and that it was associated with Adp14ARF induced overexpression of Fas and Fas-L. Addition of Fas-L neutralizing antibody NOK-1 decreased Adp14-mediated cell death, indicating that p14 (ARF) induction of the Fas pathway is associated with increased apoptosis. The finding that Adp14ARF infection did not induce Fas expression in U2OS/E6 and MCF/E6 cells suggests that wild type p53 expression may be necessary for Adp14ARF-mediated induction of Fas. The observation that overexpression of p53 by Adp53 infection in MCF-7 does not induce increased Fas protein levels nor apoptotic cell death suggests that p53 overexpression is required but not sufficient enough for apoptosis. These studies suggest there are other mechanisms other than induction of p53 in ARF-mediated apoptosis and gene therapy using Adp14ARF may be a promising treatment option for human cancers containing wild type p53 and mutant or deleted p14 expression.  相似文献   

2.
p14(ARF), the alternative product from the human INK4a/ARF locus, is one of the major targets for alterations in the development of human cancers. Overexpression of p14(ARF) results in cell cycle arrest and apoptosis. To examine the potential therapeutic role of re-expressing p14(ARF) gene product in human breast cancer, a recombinant adenovirus expressing the human p14(ARF) cDNA (Adp14(ARF)) was constructed and used to infect breast cancer cells. Five days after infection, Adp14(ARF) had considerable cytotoxicity on p53-wild-type MCF-7 cells. A time-course study showed that Adp14(ARF) infection of MCF-7 cells at 100pfu/cell increased the number of cells in G0/G1 phase and decreased that in S and G2/M phases. The presence of apoptotic cells was confirmed using the TUNEL assay. Adp14(ARF)-mediated expression of p14(ARF) also resulted in a considerable increase in the amounts of p53 and its target proteins, p21(WAF1) and MDM2. Furthermore, the combination treatment of MCF-7 cells with Adp14(ARF) and cisplatin resulted in a significantly greater cell death. Together, we conclude that p14(ARF) plays an important role in the induction of cell cycle arrest and apoptosis in breast cancer cells and recombinant adenovirus-mediated p14(ARF) expression greatly increases the sensitivity of these cells to cisplatin. These results demonstrate that the proper combination of Adp14(ARF) with conventional chemotherapeutic drug(s) could have potential benefits in treating breast cancer that carries wild-type p53 gene.  相似文献   

3.
4.
5.
As part of a cell's inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation), and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late-onset breast cancer in estrogen responsive breast cancers and/or the recurrence of more aggressive breast cancer post-therapy.  相似文献   

6.
The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF). Although primarily proposed to require a functional p53.Mdm-2 signaling axis, recently p14(ARF) has been implicated in p53-independent cell cycle regulation. Here we show that p14(ARF) preferentially induces a G(2) arrest in tumor cells lacking functional p53 and/or p21. Expression of p14(ARF) impaired mitotic entry and enforced a primarily cytoplasmic localization of p34(cdc2) that was associated with a decrease in p34(cdc2) kinase activity and reduced p34(cdc2) protein expression. A direct physical interaction between p14(ARF) and p34(cdc2) was, nevertheless, ruled out by lack of co-immunoprecipitation. The p14(ARF)-induced depletion of p34(cdc2) was associated with impaired cdc25C phosphatase expression and a prominent shift to inhibitory Tyr-15-phosphorylation in G(2)-arrested cells lacking either p53, p21, or both. Finally, reconstitution of p34(cdc2) using a constitutively active, phosphorylation-deficient p34(cdc2AF) mutant alleviated this p14(ARF)-induced G(2) arrest, thereby allowing cell cycle progression. Taken together, these data indicate that p14(ARF) arrests cells lacking functional p53/p21 in the G(2) phase of the cell cycle by targeting p34(cdc2) kinase. This may represent an important fail-safe mechanism by which p14(ARF) protects p53/p21-deficient cells from unrestrained proliferation.  相似文献   

7.
8.
9.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

10.
JNK1/2 proteins belong to the family of stress-activated protein kinases. They play a complex role in growth regulation, inducing either cell death or growth support. In this report, we provide evidence that, in human melanoma cells, JNK inhibition with the small molecule inhibitor SP600125 induces either predominantly a G2/M arrest or apoptosis depending on the cell line. In 1205Lu cells, JNK inhibition induced cell cycle arrest through p53-dependent induction of p21 Cip1/Waf1 expression, while in WM983B cells, induction of apoptosis by JNK inhibition was accompanied by p53, Bad and Bax induction, not p21 Cip1/Waf1. JNK inhibition with the small molecule inhibitor SP600125 slowed growth of all cell lines, although the effect was markedly greater in cells exhibiting high phospho- (P-)JNK1 levels. Specific gene knockdown of JNK1 by means of siRNA oligonucleotides inhibited cell growth only in melanoma cell lines exhibiting high P-JNK1 levels. siRNAs directed against JNK2 did not reduce cell growth in any of the cell lines tested. Together, our findings demonstrate that JNK, and in particular the JNK1 isoform, support the growth of melanoma cells, by controlling either cell cycle progression or apoptosis depending on the cellular context.  相似文献   

11.
In this study, in order to investigate the p53-independent function of p14ARF, we established p14ARF-inducible clones in the p53-deficient HCT cell line using the doxycycline-inducible expression system. A strong cell growth inhibition and G1/S arrest were observed after doxycycline induction in p53-/-HCT cells, and the cells also exhibited an obvious decrease of DNA synthesis. We further examined if the MEK/ERK pathway is involved in the G1 arrest induced by p14ARF in p53-/-HCT cells. The results indicate that ERK1/2 and p21 were activated upon p14ARF induction. Totally, the functional roles of ERK and p21 for ARF in p53-independent tumor suppression were demonstrated.  相似文献   

12.
p53-independent apoptosis is induced by the p19ARF tumor suppressor   总被引:6,自引:0,他引:6  
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2.  相似文献   

13.
Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.  相似文献   

14.
p21, a potent cyclin-dependent kinase inhibitor, has been known to induce cell cycle arrest in response to DNA-damaging agents. Although p21 has been reported to play an important role in the regulation of apoptosis, the postulated role for p21 in apoptosis is still controversial. Previously, we reported that p21 was induced in a p53-independent manner during ceramide-induced apoptosis in human hepatocarcinoma cell lines. In the present study, we investigated the precise role of p21 in ceramide-induced apoptosis in human hepatocarcinoma cells by using a tetracycline-inducible expression system. Overexpression of p21 by itself did not induce apoptosis in p53-deficient Hep3B cells. However, Hep3B/p21 cells were more sensitive to ceramide-induced apoptosis. In these cells, p21 overexpression did not result in G1 arrest. The expression level of Bax was increased in Hep3B/p21 cells treated with ceramide and its expression was more accelerated under the p21-overexpressed condition compared to that of the p21-repressed condition. Overexpression of Bax induced apoptosis in Hep3B cells. On the other hand, the levels of p21 and Bax protein were increased by ceramide in another hepatocarcinoma cell line, SK-Hep-1, while the Bcl-2 protein level was not changed. Overexpression of Bcl-2 not only suppressed apoptosis but also completely prevented induction of p21 and Bax caused by ceramide in SK-Hep-1 cells. Furthermore, overexpression of p21 antagonized the death-protective function of Bcl-2 and upregulated expression of Bax protein. These results suggest that p21 promotes ceramide-induced apoptosis by enhancing the expression of Bax, thereby modulating the molecular ratio of Bcl-2:Bax in human hepatocarcinoma cells.  相似文献   

15.
The ARF (p19ARF for the mouse ARF consisting of 169 amino acids and p14ARF for the human ARF consisting of 132 amino acids) genes upregulate p53 activities to induce cell cycle arrest and sensitize cells to apoptosis by inhibiting Mdm2 activity. p53-independent apoptosis also is induced by ectopic expression of p19ARF. We constructed various deletion mutants of p19ARF with a cre/loxP-regulated adenoviral vector to determine the regions of p19ARF which are responsible for p53-independent apoptosis. Ectopic expression of the C-terminal region (named C40) of p19ARF whose primary sequence is unique to the rodent ARF induced prominent apoptosis in p53-deficient mouse embryo fibroblasts. Relatively low-grade but significant apoptosis also was induced in p53-deficient mouse embryo fibroblasts by ectopic expression of p19ARF1-129, a p19ARF deletion mutant deficient in the C40 region. In contrast, ectopic expression of the wild-type p14ARF did not induce significant apoptosis in human cells. Taken together, we concluded that p53-independent apoptosis was mediated through multiple regions of the mouse ARF including C40, and the ability of the ARF gene to mediate p53-independent apoptosis has been not well conserved during mammalian evolution.  相似文献   

16.
17.
Replicative senescence as a barrier to human cancer   总被引:3,自引:0,他引:3  
There is evidence that one critically short telomere may be recognized as DNA damage and, as a consequence, induce a p53/p21WAF- and p16INK4A-dependent G1 cell cycle checkpoint to cause senescence. Additionally, senescence via a p53- and p16(INK4A)-dependent mechanism can be induced by the over- or under-stimulation of certain signalling pathways that are involved in cancer. Central to this alternative senescence mechanism is the p14ARF protein, which connects oncogene activation, but not DNA damage, to p53 activation and senescence. We find that immortal keratinocytes almost invariably have dysfunctional p53 and p16 and have high levels of telomerase, but very often express a wild-type p14(ARF). Furthermore, when normal keratinocytes senesce they show a striking elevation of p16 protein, but not of p14(ARF) or its downstream targets p53 and p21(WAF). These results suggest that p16, rather than p14(ARF), is the more important gene in human keratinocyte senescence, but do not exclude a co-operative role for p14(ARF), perhaps in the induction of senescence by activated oncogenes in neoplasia. Regardless of mechanism, these results suggest that replicative senescence acts as a barrier to human cancer development.  相似文献   

18.
We generated A21-13 cells expressing p14(ARF) in the presence of doxycycline in order to examine the stability of p14(ARF) protein. The effects of proteasome inhibitor MG132 on p14(ARF) protein stabilization were detectable using our experimental procedure. Introduction of mutant p53 did not affect MG132-mediated p14(ARF) protein stabilization. We found that phorbol ester TPA (12-o-tetradecanoyl-phorbol 13-acetate) stabilized p14(ARF) protein and that p53 status had no effect on TPA-mediated stabilization. TPA-mediated stabilization was abolished by staurosporine but not by lovastatin or U0126. We further investigated which isoforms of PKC were involved in TPA-mediated p14(ARF) stabilization using short-interference RNA. Knockdown of PKCalpha, but not PKCdelta, attenuated TPA-mediated p14(ARF) stabilization. These findings suggest that PKCalpha is involved in TPA-mediated stabilization of p14(ARF) protein, and this effect of TPA was not affected by the Ras/MAPK pathway or p53 status. Our results are indicative of a novel role of PKC in p14(ARF) protein stability.  相似文献   

19.
INK4a/ARF基因位于人染色体9p21,是人类肿瘤中最常见的基因失活位点之一.INK4a/ARF基因有两套各自独立的启动子,通过可变阅读框,能够编码两种蛋白质:p16INK4a和p14ARF(ARF在鼠细胞中为p19ARF).p16作为CDK4/6的抑制因子,能够阻断pRb磷酸化,将细胞周期阻断在G1期;而ARF可结合原癌蛋白MDM2,稳定p53,将细胞周期阻断在G1期和G2/M转换期,或诱导细胞凋亡.因此ARF蛋白和p16一样也是一种肿瘤抑制因子.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号