首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymphocytes from the blood home to secondary lymphoid tissues through a process of tethering, rolling, firm adhesion and transmigration. Tethering and rolling of lymphocytes is mediated by the interaction of L-selectin on lymphocytes with sulphated ligands expressed by the specialized endothelial cells of high endothelial venules (HEVs). The sulphate-dependent monoclonal antibody MECA79 stains HEVs in peripheral lymph nodes and recognizes the complex of HEV ligands for L-selectin termed peripheral node addressin. High endothelial cell GlcNAc-6-sulphotransferase/L-selectin ligand sulphotransferase is a HEV-expressed sulphotransferase that contributes to the formation of the MECA79 epitope and L-selectin ligands on lymph node HEVs. MECA79-reactive vessels are also common at sites of chronic inflammation, suggesting mechanistic parallels between lymphocyte homing and inflammatory trafficking.  相似文献   

2.
High endothelial venules of the lymph nodes express Fas ligand.   总被引:1,自引:0,他引:1  
Fas (CD95, APO-1) is widely expressed on lymphatic cells, and by interacting with its natural ligand (Fas-L), Fas induces apoptosis through a complex caspase cascade. In this study we sought to survey Fas-L expression in vascular and sinusoidal structures of human reactive lymph nodes. Immunohistochemical Fas-L expression was present in all paracortical high endothelial venules (HEVs), in cells lining the marginal sinus wall, and in a few lymphocytes, but only occasionally in non-HEV vascular endothelium. In the paracortical zone over 60% of all vessels and all paracortical HEVs showed Fas-L expression, whereas in the medullary zone less than 10% of the blood vessels were stained with Fas-L. Normal vessels outside lymph nodes mostly showed no Fas-L expression. We show that in human reactive lymph nodes Fas-L expression is predominantly present in HEVs. Because the circulating lymphocytes gain entry to nodal parenchyma by transendothelial migration through HEVs, the suggested physiological importance of Fas-L expression in these vessels lies in the regulation of lymphocyte access to lymph node parenchyma by possibly inducing Fas/Fas-L mediated apoptosis of activated Fas-expressing lymphoid cells. The Fas-L expressing cells in the marginal sinus might have a similar function for cells accessing the node in afferent lymph.  相似文献   

3.
In this study, we demonstrated that the anti-LeYantibody (BM-1) especially reacted with high endothelial venules (HEVs) in peripheral lymph nodes of blood group O individuals. The LeYexpression on HEVs showed a unique tissue-specific pattern, i.e., a large amount of the LeYexpression in peripheral lymph nodes and no or small amounts in mesenteric lymph node. Statistical analysis showed that there was the significant difference between the percentage of LeY-positive HEVs in peripheral lymph nodes and mesenteric lymph nodes. No expression of LeYwas observed in vessels of Payer's patch, thymus, spleen and other non-lymphoid organs. In blood group A or B individuals, the reactivity between HEVs and anti-LeYantibody increased after enzyme digestion with -N-acetylgalactosaminidase or -galactosidase. These findings show that the expression of difucosylated blood group ABH antigens are especially expressed on HEVs in peripheral lymph nodes. Furthermore, the tissue-specific pattern suggests that these antigens may be related to intercellular adhesion between lymphocytes and HEVs.  相似文献   

4.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   

5.
6.
High endothelial venule (HEV) cells support lymphocyte migration from the peripheral blood into secondary lymphoid tissues. Using gene expression profiling of mucosal addressin cell adhesion molecule-1(+) mesenteric lymph node HEV cells by quantitative 3'-cDNA collection, we have identified a leucine-rich protein, named leucine-rich HEV glycoprotein (LRHG) that is selectively expressed in these cells. Northern blot analysis revealed that LRHG mRNA is approximately 1.3 kb and is expressed in lymph nodes, liver, and heart. In situ hybridization analysis demonstrated that the mRNA expression in lymph nodes is strictly restricted to the HEV cells, and immunofluorescence analysis with polyclonal Abs against LRHG indicated that the LRHG protein is localized mainly to HEV cells and possibly to some lymphoid cells surrounding the HEVs. LRHG cDNA encodes a 342-aa protein containing 8 tandem leucine-rich repeats of 24 aa each and has high homology to human leucine-rich alpha(2)-glycoprotein. Similar to some other leucine-rich repeat protein family members, LRHG can bind extracellular matrix proteins that are expressed on the basal lamina of HEVs, such as fibronectin, collagen IV, and laminin. In addition, LRHG binds TGF-beta. These results suggest that LRHG is likely to be multifunctional in that it may capture TGF-beta and/or other related humoral factors to modulate cell adhesion locally and may also be involved in the adhesion of HEV cells to the surrounding basal lamina.  相似文献   

7.
Lymphangiogenesis and its role in cancer   总被引:8,自引:0,他引:8  
In many tumour types, lymphatic vasculature serves as a major route for tumour metastasis. The dissemination of malignant cells to the regional lymph nodes is an early step in the progression of many solid tumours and is an important determinant of prognosis. Lymphangiogenesis (formation of new lymphatic vessels) is thought to be crucial for cancer cells to metastasise to the regional lymph nodes. However research in this important process has been neglected largely due to the lack of molecular markers specific to the lymphatic endothelium. Recently, several specific markers have been identified including LYVE-1, podoplanin and prox-1. Although the biology of lymphangiogeneis, particularly its regulation, is still far from clear, it is now well established that tumours are lymphangiogenic i.e. they could induce the generation of their own lymphatics and metastasise to the regional lymph nodes. It is thought that the interruption of the main signalling pathways involved in this process could help to prevent lymphatic spread of many tumours. Furthermore, understanding the molecular mechanisms in lymphangiogenesis might help to develop new therapeutic strategies against cancer lymphatic spread. Here, we reviewed the literature in regards to the biology of lymphangiogenesis, its molecular regulation, lymphatic markers and the significance in human solid tumours.  相似文献   

8.
While CCR7 ligands direct T cell trafficking into lymph nodes (LNs) and Peyer's patches (PPs), chemokines that regulate B cell trafficking across high endothelial venules (HEVs) remain to be fully elucidated. Here we report that CXC chemokine ligand (CXCL)13 (B lymphocyte chemoattractant) is detected immunohistologically in the majority of HEVs in LNs and PPs of nonimmunized mice. Systemically administered anti-CXCL13 Ab bound to the surface of approximately 50% of HEVs in LNs and PPs, but not to other types of blood vessels, indicating that CXCL13 is expressed in the HEV lumen. In CXCL13-null mice, B cells rarely adhered to PP HEVs, whereas T cells did efficiently. Superfusion of CXCL13-null PPs with CXCL13 restored the luminal presentation of CXCL13 and also B cell arrest in PP HEVs at least partially. Collectively, these results indicate that CXCL13 expressed in the HEV lumen plays a crucial role in B cell trafficking into secondary lymphoid tissues such as PPs.  相似文献   

9.
A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients.  相似文献   

10.
Lymph nodes in pigs are unique in their inverted structure, with the medulla in the periphery and the cortex in central areas. Furthermore, in this species most migrating lymphocytes do not use the classical route via efferent lymphatics to leave the lymph node. High-endothelial venules (HEV) are the entry sites for lymphocytes and in pigs probably also the exit site for recirculating lymphocytes. Therefore, the blood vessels and especially the HEV of the pig superficial inguinal lymph node were investigated as to whether morphological peculiarities could be found in the vascular system, using vascular casting, transmission- and scanning electron microscopy. A thin layer of capillary network surrounded the periphery of the lymph node and HEV branched acutely. The endothelial cells of HEV possessed well developed cytoplasmic organelles, interdigitated with each other, and demonstrated local cell-cell contacts. There were unusual cells bridging the adluminal wall of HEV. These cells were called intravascular bridging cells. They were characterized by an often invaginated nucleus, few pinocytotic vesicles, many microvilli on the surface, wide, flat, cytoplasmic processes like a pseudopod, Weibel-Palade bodies and local cell-cell contacts with endothelial cells. The pseudopod-like processes ramified over the endothelial junctions and covered lymphocytes. Lymphocytes were seen in different phases of migration between endothelial cells and in the intercellular junctions. The previous functional studies on the peculiar route of lymphocyte recirculation in pig lymph nodes are extended by these morphological data, showing a unique structure of HEV in pigs.  相似文献   

11.
Lymph nodes (LN''s), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infection.The inguinal LN, like all LNs, has an extensive microvascular network supplying it with blood. In general, this microvascular network includes the main feed arteriole of the LN that subsequently branches and feeds high endothelial venules (HEVs). HEVs are specialized for facilitating the trafficking of immune cells into the LN during both homeostasis and infection. How HEVs regulate trafficking into the LN under both of these circumstances is an area of intense exploration. The LN feed arteriole, has direct upstream influence on the HEVs and is the main supply of nutrients and cell rich blood into the LN. Furthermore, changes in the feed arteriole are implicated in facilitating induction of adaptive immune response. The LN microvasculature has obvious importance in maintaining an optimal blood supply to the LN and regulating immune cell influx into the LN, which are crucial elements in proper LN function and subsequently immune response. The ability to study the LN microvasculature in vivo is key to elucidating how the immune system and the microvasculature interact and influence one another within the LN. Here, we present a method for in vivo imaging of the inguinal lymph node. We focus on imaging of the microvasculature of the LN, paying particular attention to methods that ensure the study of healthy vessels, the ability to maintain imaging of viable vessels over a number of hours, and quantification of vessel magnitude. Methods for perfusion of the microvasculature with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.  相似文献   

12.
The lymph node vasculature is essential to immune function, but mechanisms regulating lymph node vascular maintenance and growth are not well understood. Vascular endothelial growth factor (VEGF) is an important mediator of lymph node endothelial cell proliferation in stimulated lymph nodes. It is expressed basally in lymph nodes and up-regulated upon lymph node stimulation, but the identity of VEGF-expressing cells in lymph nodes is not known. We show that, at homeostasis, fibroblast-type reticular stromal cells (FRC) in the T zone and medullary cords are the principal VEGF-expressing cells in lymph nodes and that VEGF plays a role in maintaining endothelial cell proliferation, although peripheral node addressin (PNAd)(+) endothelial cells are less sensitive than PNAd(-) endothelial cells to VEGF blockade. Lymphotoxin beta receptor (LTbetaR) blockade reduces homeostatic VEGF levels and endothelial cell proliferation, and LTbetaR stimulation of murine fibroblast-type cells up-regulates VEGF expression, suggesting that LTbetaR signals on FRC regulate lymph node VEGF levels and, thereby, lymph node endothelial cell proliferation. At the initiation of immune responses, FRC remain the principal VEGF mRNA-expressing cells in lymph nodes, suggesting that FRC may play an important role in regulating vascular growth in stimulated nodes. In stimulated nodes, VEGF regulates the proliferation and expansion of both PNAd(+) and PNAd(-) endothelial cells. Taken together, these data suggest a role for FRC as paracrine regulators of lymph node endothelial cells and suggest that modulation of FRC VEGF expression may be a means to regulate lymph node vascularity and, potentially, immune function.  相似文献   

13.
Lymphangiogenesis results in the formation of a vascular network distinct from arteries and veins that serves to drain interstitial fluid from surrounding tissues and plays a pivotal role in the immune defense of vertebrates as well as in the progression of cancer and other diseases . In mammals, lymph vessels are lined by endothelial cells possibly sprouting from embryonic veins, and their development appears to be critically dependent on the function of PROX1 and VEGFC signaling . The existence of a lymphatic system in teleosts has been a matter of debate for decades. Here we show on the morphological, molecular, and functional levels that zebrafish embryos develop a lymphatic vasculature that serves to retrieve components of the interstitium to the lymph system. We demonstrate the existence of vessels that are molecularly and functionally distinct from blood vessels and show that the development of these vessels depends on Vegfc and VEGFR-3/Flt4 signaling. These findings imply that the molecular components controlling lymphangiogenesis in zebrafish and mammals are conserved and that the zebrafish lymphatic system develops early enough to allow in vivo observations, lineage tracing, and genetic as well as pharmacological screens.  相似文献   

14.
Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness‐induced CCN1 activates β‐catenin nuclear translocation and signaling and that this contributes to upregulate N‐cadherin levels on the surface of the endothelium, in vitro. This facilitates N‐cadherin‐dependent cancer cell–endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness‐induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.  相似文献   

15.
Neuroinvasion and subsequent destruction of the central nervous system by prions are typically preceded by a colonization phase in lymphoid organs. An important compartment harboring prions in lymphoid tissue is the follicular dendritic cell (FDC), which requires both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance. However, prions are still detected in TNFR1−/− lymph nodes despite the absence of mature FDCs. Here we show that TNFR1-independent prion accumulation in lymph nodes depends on LTβR signaling. Loss of LTβR signaling, but not of TNFR1, was concurrent with the dedifferentiation of high endothelial venules (HEVs) required for lymphocyte entry into lymph nodes. Using luminescent conjugated polymers for histochemical PrPSc detection, we identified PrPSc deposits associated with HEVs in TNFR1−/− lymph nodes. Hence, prions may enter lymph nodes by HEVs and accumulate or replicate in the absence of mature FDCs.  相似文献   

16.
Lymphoid tumors display a wide variety of growth patterns in vivo, from that of a solitary extralymphoid tumor, to a general involvement of all lymphoid organs. Normal lymphocytes are uniquely mobile cells continuously recirculating between blood and lymph throughout much of their life cycle. Therefore, it is reasonable to propose that disseminating malignant lymphocytes may express recirculation characteristics or homing properties consistent with that of their normal lymphoid counterparts. Trafficking of lymphocytes involves the expression and recognition of both lymphocyte homing receptors and their opposing receptors on endothelium, the vascular addressins. These cell surface elements direct the tissue-selective localization of lymphocyte subsets in vivo into organized lymphoid organs and sites of chronic inflammation where specific binding events occur between lymphocytes and the endothelium of specialized high endothelial venules (HEV). In a recent murine study of 13 lymphoma lines, we found that lymphomas that bind well to high endothelial venules, in the Stamper-Woodruff in vitro assay (an assay of lymphocyte binding to venules in frozen sections of peripheral lymph nodes or Peyer's patches), spread hematogenously to all high endothelial venule bearing lymphoid organs, whereas non-binding lymphomas did not. In some cases lymphomas that bound with a high degree of selectivity to peripheral lymph node (PLN) high endothelial venules exhibited only limited organ preference of metastasis, involving the mucosal lymphoid organs Peyer's patches (PP) in addition to the peripheral lymph nodes of adoptive recipients. Here we demonstrate that Peyer's patch high endothelial venules express a low but functional level of peripheral lymph node addressin (MECA-79) that can be recognized by lymphomas expressing the peripheral lymph node homing receptor (MEL-14 antigen).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Radiation therapy is a widely used cancer treatment, but it is unable to completely block cancer metastasis. The lymphatic vasculature serves as the primary route for metastatic spread, but little is known about how lymphatic endothelial cells respond to radiation. Here, we show that lymphatic endothelial cells in the small intestine and peri-tumor areas are highly resistant to radiation injury, while blood vessel endothelial cells in the small intestine are relatively sensitive. Our results suggest the need for alternative therapeutic modalities that can block lymphatic endothelial cell survival, and thus disrupt the integrity of lymphatic vessels in peri-tumor areas.  相似文献   

18.
Lymph node blood vessels play important roles in the support and trafficking of immune cells. The blood vasculature is a component of the vascular-stromal compartment that also includes the lymphatic vasculature and fibroblastic reticular cells (FRCs). During immune responses as lymph nodes swell, the blood vasculature undergoes a rapid proliferative growth that is initially dependent on CD11c(+) cells and vascular endothelial growth factor (VEGF) but is independent of lymphocytes. The lymphatic vasculature grows with similar kinetics and VEGF dependence, suggesting coregulation of blood and lymphatic vascular growth, but lymphatic growth has been shown to be B cell dependent. In this article, we show that blood vascular, lymphatic, and FRC growth are coordinately regulated and identify two distinct phases of vascular-stromal growth--an initiation phase, characterized by upregulated vascular-stromal proliferation, and a subsequent expansion phase. The initiation phase is CD11c(+) cell dependent and T/B cell independent, whereas the expansion phase is dependent on B and T cells together. Using CCR7(-/-) mice and selective depletion of migratory skin dendritic cells, we show that endogenous skin-derived dendritic cells are not important during the initiation phase and uncover a modest regulatory role for CCR7. Finally, we show that FRC VEGF expression is upregulated during initiation and that dendritic cells can stimulate increased fibroblastic VEGF, suggesting the scenario that lymph node-resident CD11c(+) cells orchestrate the initiation of blood and lymphatic vascular growth in part by stimulating FRCs to upregulate VEGF. These results illustrate how the lymph node microenvironment is shaped by the cells it supports.  相似文献   

19.
Cytokines may facilitate lymphocyte traffic by modulating HEV structure and lymphocyte binding function in accordance with local tissue requirements. This study investigated whether the morphology of HEVs and their lymphocyte binding ligand are altered following antigenic challenge and evaluated the role of IFN-gamma in the induction of such changes. The morphology and lymphocyte binding function of mesenteric LN HEVs of GFM exposed to environmental pathogens were compared to those from GFM and conventional mice. Lymph nodes from all mice had microscopically identifiable HEVs. The morphology of HEVs from GFM was not uniform; many HEVs contained flat endothelial cells with sparse cytoplasm and prominent interendothelial gaps. The number of lymphocytes within the lumen and the HEV wall was low. In contrast, HEVs from GFME and conventional mice were characterized by cuboidal endothelial cells with plentiful cytoplasm and large numbers of lymphocytes in the vessel wall and lumen. There was no delineation of interendothelial cell borders. Lymphocyte binding to HEVs of lymph node sections from GFM was reduced (mean +/- SEM: 1.08 +/- 0.15) compared to that of conventional mice (1.91 +/- 0.20), P less than 0.003. GFME had augmented lymphocyte binding (2.23 +/- 0.26) to levels comparable with those of conventional mice. GFM injected intraperitoneally with IFN-gamma, IFN-alpha beta, or diluent resulted in minor changes in HEV morphology. By contrast, lymphocyte binding to HEV of GFM was more than doubled by the injection of IFN-gamma (1.95 +/- 0.25), P less than 0.01, but not IFN-alpha beta (0.54 +/- 0.07) or the relevant diluent controls (0.89 +/- 0.11, 0.56 +/- 0.06, respectively). It appears that the HEV binding ligand is inducible, and its expression is regulated by at least one immunomodulator, IFN-gamma. Although short-term exposure of HEVs to IFN-gamma influenced HEV function it caused only minor changes in morphology.  相似文献   

20.
Using light and electron microscopy and morphometry, the morphological changes in the lymph nodes of arterial and venous parts of capillaries were studied on the 11th, 17th and 21st days of pregnancy in rats. Ultrastructural changes in endothelial cells of blood vessels in the uterine lymph nodes during normal pregnancy are of adaptive nature and are possibly responsible for the relief of the blood congestion in the system of the inferior vena cava and for the improvement of the utero-placental circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号