首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Camptothecin (CPT) and Nutlin-3 caused apoptosis by increasing p53 protein and its activation in intestinal epithelial cells (IEC-6). We studied the effectiveness of these inducers on apoptosis in human colon cancer cells (Caco2) lacking p53 expression. CPT failed to activate caspase-3 and cause apoptosis in these cells. The absence of p53 expression, higher basal Bcl-xL and lower Bax proteins prevented CPT-induced apoptosis. However, the Mdm2 antagonist Nutlin-3 induced apoptosis in a dose dependent manner by activating caspases-9 and -3. Nutlin-3 prevented the activation of AKT via PTEN-mediated inhibition of the PI3K pathway. Nutlin-3 increased the phosphorylation of retinoblastoma protein causing E2F1 release leading to induction of Siva-1. Nutlin-3-mediated degradation of Mdm2 caused the accumulation of p73, which induced the expression of p53 up-regulated modulator of apoptosis (PUMA). E2F1 and p73 knockdown decreased the expression of Siva and PUMA, respectively and abolished Nutlin-3-induced caspase-3 activation. Cycloheximide (CHX) inhibited Nutlin-3-induced Siva, Noxa, and PUMA expression and inhibited apoptosis in IEC-6 and Caco2 cells. These results indicate that translation of mRNAs induced by Nutlin-3 is critical for apoptosis. In summary, apoptosis in Caco2 cells lacking functional p53 occurred following the disruption of Mdm2 binding with p73 and Rb leading to the expression of pro-apoptotic proteins, PUMA, Noxa, and Siva-1.  相似文献   

2.
3.
The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies.  相似文献   

4.
The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small-molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a genome-wide short hairpin RNA screen for genes that are lethal in combination with p53 activation by Nutlin-3, which showed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors also enable Nutlin-3 to kill tumor spheroids. These results identify new pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies.  相似文献   

5.
Restoring p53 activity by inhibiting the interaction between p53 and the mouse double minutes clone 2 (MDM2) offers an attractive approach to cancer therapy. Nutlin-3a is a small-molecule inhibitor that inhibits MDM2 binding to p53 and subsequent p53-dependent DNA damage signaling. In this study, we determined the efficacy of Nutlin-3a in inducing p53-mediated cell death in osteosarcoma (OS) cell lines both in vivo and in vitro. Targeted disruption of the p53-MDM2 interaction by Nutlin-3a stabilizes p53 and selectively activates the p53 pathway only in OS cells with wild-type p53, resulting in a pronounced anti-proliferative and cytotoxic effect due to G1 cell cycle arrest and apoptosis both in vitro and in vivo. p53 dependence of these alternative outcomes of Nutlin-3a treatment was shown by the abrogation of these effects when p53 was knocked-down by small interfering RNA. These data suggest that the disruption of p53-MDM2 interaction by Nutlin-3a might be beneficial for OS patients with MDM2 amplification and wt p53 status.  相似文献   

6.
Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In our previous study, Nutlin-3a promoted a tetraploid G1 arrest in two p53 wild-type cell lines (HCT116 and U2OS), and both cell lines underwent endoreduplication after Nutlin-3a removal. Endoreduplication gave rise to stable tetraploid clones resistant to therapy-induced apoptosis. Prior knowledge of whether cells are susceptible to Nutlin-induced endoreduplication and therapy resistance could help direct Nutlin-3a-based therapies. In the present study, Nutlin-3a promoted a tetraploid G1 arrest in multiple p53 wild-type cell lines. However, some cell lines underwent endoreduplication to relatively high extents after Nutlin-3a removal whereas other cell lines did not. The resistance to endoreduplication observed in some cell lines was associated with a prolonged 4N arrest after Nutlin-3a removal. Knockdown of either p53 or p21 immediately after Nutlin-3a removal could drive endoreduplication in otherwise resistant 4N cells. Finally, 4N-arrested cells retained persistent p21 expression; expressed senescence-associated β-galactosidase; displayed an enlarged, flattened phenotype; and underwent a proliferation block that lasted at least 2 weeks after Nutlin-3a removal. These findings demonstrate that transient Nutlin-3a treatment can promote an apparently permanent proliferative block in 4N cells of certain cell lines associated with persistent p21 expression and resistance to endoreduplication.  相似文献   

7.
Regulation of PTEN transcription by p53.   总被引:35,自引:0,他引:35  
PTEN tumor suppressor is frequently mutated in human cancers and is a negative regulator of PI3'K/PKB/Akt-dependent cellular survival. Investigation of the human genomic PTEN locus revealed a p53 binding element directly upstream of the PTEN gene. Deletion and mutation analyses showed that this element is necessary for inducible transactivation of PTEN by p53. A p53-independent element controlling constitutive expression of PTEN was also identified. In contrast to p53 mutant cell lines, induction of p53 in primary and tumor cell lines with wild-type p53 increased PTEN mRNA levels. PTEN was required for p53-mediated apoptosis in immortalized mouse embryonic fibroblasts. Our results reveal a unique role for p53 in regulation of cellular survival and an interesting connection in tumor suppressor signaling.  相似文献   

8.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.  相似文献   

9.
Nutlin-3 selectively activates p53 by inhibiting the interaction of this tumor suppressor with its negative regulator murine double minute 2 (mdm2), while trichostatin A (TSA) is one of the most potent histone deacetylase (HDAC) inhibitors currently available. As both Nutlin-3 and TSA increase the levels of the cell cycle inhibitor p21(cip1/waf1) in cells, we investigated whether a combination of these compounds would further augment p21 levels. Contrary to expectations, we found that short-term exposure to Nutlin-3 and TSA in combination did not have an additive effect on p21 expression. Instead, we observed that activation of p53 prevented the ability of TSA to increase p21 levels. Furthermore, TSA inhibited Nutlin-3-induced expression of p53-dependent mRNAs including P21. This negative effect of TSA on Nutlin-3 was significantly less pronounced in the case of hdm2, another p53 downstream target. Aside from suggesting a model to explain these incompatible effects of Nutlin-3 and TSA, we discuss the implications of our findings in cancer therapy and cell reprogramming.  相似文献   

10.
11.
PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy.   总被引:31,自引:0,他引:31  
The PTEN tumor suppressor protein inhibits phosphatidylinositol 3-kinase (PI3K)/Akt signaling that promotes translocation of Mdm2 into the nucleus. When restricted to the cytoplasm, Mdm2 is degraded. The ability of PTEN to inhibit the nuclear entry of Mdm2 increases the cellular content and transactivation of the p53 tumor suppressor protein. Retroviral transduction of PTEN into U87MG (PTEN null) glioblastoma cells increases p53 activity and expression of p53 target genes and induces cell cycle arrest. U87MG/PTEN glioblastoma cells are more sensitive than U87MG/PTEN null cells to death induced by etoposide, a chemotherapeutic agent that induces DNA damage. Previously, tumor suppressor proteins have been supposed to act individually to suppress cancers. Our results establish a direct connection between the activities of two major tumor suppressors and show that they act together to respond to stresses and malignancies. PTEN protects p53 from survival signals, permitting p53 to function as a guardian of the genome. By virtue of its capacity to protect p53, PTEN can sensitize tumor cells to chemotherapy that relies on p53 activity. p53 induces PTEN gene expression, and here it is shown that PTEN protects p53, indicating that a positive feedback loop may amplify the cellular response to stress, damage, and cancer.  相似文献   

12.
13.
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.  相似文献   

14.
Inhibition of Mdm2 function is a validated approach to restore p53 activity for cancer therapy; nevertheless, inhibitors of Mdm2 such as Nutlin-3 have certain limitations, suggesting that additional targets in this pathway need to be further elucidated. Our finding that the Herpesvirus-Associated Ubiquitin-Specific Protease (HAUSP, also called USP7) interacts with the p53/Mdm2 protein complex, was one of the first examples that deubiquitinases (DUBs) exhibit a specific role in regulating protein stability. Here, we show that inhibitors of HAUSP and Nutlin-3 can synergistically activate p53 function and induce p53-dependent apoptosis in human cancer cells. Notably, HAUSP can also target the N-Myc oncoprotein in a p53-independent manner. Moreover, newly synthesized HAUSP inhibitors are more potent than the commercially available inhibitors to suppress N-Myc activities in p53 mutant cells for growth suppression. Taken together, our study demonstrates the utility of HAUSP inhibitors to target cancers in both a p53-depdentent and -independent manner.  相似文献   

15.
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.  相似文献   

16.
In response to genotoxic stress, p53 induces the tumor suppressors maspin and PTEN. Here we demonstrate that in response to limited oxygen conditions PTEN and p53 work in tandem to induce maspin in glioblastoma cells. In response to hypoxia a portion of PTEN migrates to the nucleus and complexes with p53, while cytoplasmic PTEN prevents Mdm2 nuclear localization by attenuating Akt signaling. Subcellular distribution of PTEN in the cytoplasm or nucleus protects p53 from inac-tivation and degradation. The presence of nuclear PTEN and p53 coordinates the induction of maspin and p21 (both p53 gene targets) in response to hypoxia. Altering the expression of PTEN and/or p53 attenuated maspin gene induction under hypoxic conditions. Furthermore, implanting U87 (PTEN null) and PTEN reconstituted U87 cells (U87PTEN) in mice we observed by immuno-histochemistry and western blot that Maspin was only detectable in cells with PTEN. The integra-tion of PTEN and p53 into a common pathway for the induction of another tumor suppressor, Maspin, constitutes a tumor suppressor network of PTEN/p53/Mapsin that is operational under limited oxygen conditions.  相似文献   

17.
18.
We have recently identified mutually antagonizing signaling pathways that regulate podosome formation and invasive phenotypes in Src-transformed vascular smooth muscle cells and fibroblasts. Cross-talks between the anti-invasion p53-PTEN, and the pro-invasion Src-Stat3 and Src-PI3K-Akt pathways serve as a check and balance that dictates the outcome of either an invasive or non-invasive phenotype. Using a retrovirus vector encoding PTEN phosphatase mutants that retain either protein- or lipid-phosphatase activity on a Src(Y527F)background, we report here that both lipid- and protein-phosphatase activities of PTEN contribute to the suppression of Src-induced podosome formation and associated invasive phenotypes in rat aortic smooth muscle cells. This data suggests that p53 up-regulation of PTEN inhibits cell invasion via a two-prong mechanism: inactivating podosome agonists by its protein-phosphatase activity on the one hand, and antagonising the PI3K-Akt pathway by its lipid-phosphatase activity on the other.  相似文献   

19.
Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]  相似文献   

20.
The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) is associated with Kaposi's sarcoma (KS) as well as primary effusion lymphomas (PEL). The expression of viral proteins capable of inactivating the p53 tumor suppressor protein has been implicated in KSHV oncogenesis. However, DNA-damaging drugs such as doxorubicin are clinically efficacious against PEL and KS, suggesting that p53 signaling remains intact despite the presence of KSHV. To investigate the functionality of p53 in PEL, we examined the response of a large number of PEL cell lines to doxorubicin. Two out of seven (29%) PEL cell lines harbored a mutant p53 allele (BCBL-1 and BCP-1) which led to doxorubicin resistance. In contrast, all other PEL containing wild-type p53 showed DNA damage-induced cell cycle arrest, p53 phosphorylation, and p53 target gene activation. These data imply that p53-mediated DNA damage signaling was intact. Supporting this finding, chemical inhibition of p53 signaling in PEL led to doxorubicin resistance, and chemical activation of p53 by the Hdm2 antagonist Nutlin-3 led to unimpaired induction of p53 target genes as well as growth inhibition and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号