首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Role of Notch Signaling in Adult Neurogenesis   总被引:1,自引:0,他引:1  
Neurogenesis occurs throughout adulthood in the mammalian brain. Newly born neurons are incorporated into the functional networks of both the olfactory bulb and the hippocampal dentate gyrus, and there is growing evidence that adult neurogenesis is important for various brain functions. Continuous neurogenesis is achieved by the coordinated proliferation and differentiation of adult neural stem cells. In this review, we discuss the recent findings concerning the roles of Notch signaling in adult neural stem cells.  相似文献   

2.
Understanding the mechanisms that control the maintenance of neural stem cells is crucial for the study of neurogenesis. In the brain, granule cell neurogenesis occurs during development and adulthood, and the generation of new neurons in the adult subgranular zone of the dentate gyrus contributes to learning. Notch signaling plays an important role during postnatal and adult subgranular zone neurogenesis, and it has been suggested as a potential candidate to couple cell proliferation with stem cell maintenance. Here we show that conditional inactivation of Jagged1 affects neural stem cell maintenance and proliferation during postnatal and adult neurogenesis of the subgranular zone. As a result, granule cell production is severely impaired. Our results provide additional support to the proposal that Notch/Jagged1 activity is required for neural stem cell maintenance during granule cell neurogenesis and suggest a link between maintenance and proliferation of these cells during the early stages of neurogenesis.  相似文献   

3.
Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice. Furthermore, Wnt7a is important for neuronal differentiation and maturation. Loss of Wnt7a expression led to a substantial decrease in the number of newborn neurons in the hippocampal dentate gyrus. Wnt7a−/− dentate granule neurons exhibited dramatically impaired dendritic development. Moreover, Wnt7a activated β-catenin and its downstream target genes to regulate neural stem cell proliferation and differentiation. Wnt7a stimulated neural stem cell proliferation by activating the β-catenin–cyclin D1 pathway and promoted neuronal differentiation and maturation by inducing the β-catenin–neurogenin 2 pathway. Thus, Wnt7a exercised critical control over multiple steps of neurogenesis by regulating genes involved in both cell cycle control and neuronal differentiation.  相似文献   

4.
Neural stem cells (NSCs) in the postnatal mammalian brain self-renew and are a source of neurons and glia. To date, little is known about the molecular and cellular mechanisms regulating the maintenance and differentiation of these multipotent progenitors. We show that Jagged1 is required by mitotic cells in the subventricular zone (SVZ) and stimulates self-renewal of multipotent epidermal growth factor-dependent NSCs. Jagged1-expressing cells line the adult SVZ and are juxtaposed to Notch1-expressing cells, some of which are putative NSCs. In vitro, endogenous Jagged1 acts through Notch1 to promote NSC maintenance and multipotency. In vivo, reducing Jagged1/Notch1 signaling decreases the number of proliferating cells in the SVZ. In addition, soluble Jagged1 promotes self-renewal and neurogenic potential of multipotent neural progenitors in vitro. Our findings suggest a central role for Jagged1 in the NSC niche in the SVZ for maintaining a population of NSCs in the postnatal brain.  相似文献   

5.
The phenomenon of adult neurogenesis has been demonstrated in most mammals including humans. At least two regions of the adult brain maintain stem cells throughout life; the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subventricular zone (SVZ) of the lateral ventricle wall. Both regions continuously produce neurons that mature and become integrated into functional networks that are involved in learning and memory and odor discrimination, respectively. Apart from these well‐studied regions neurogenesis has been reported in a number of other brain regions, such as amygdala and cortex. However, these studies have been contested and there is currently no well‐postulated function for non‐SVZ/SGZ neurogenesis. The studies of the regional localization of neurogenesis in the brain have been made possible due to several methods for detecting adult neurogenesis including; bromodeoxyuridine labeling (BrdU) together with markers of mature neurons, genetic labeling, by mouse transgenesis, or with the use of viral vectors. These techniques are already put to creative use and will be essential for the discovery of the nature of the adult neural stem cells. In this mini‐review, we will discuss the localization of neural stem/progenitor cells in the brain and their implications as well as discussing the pro's and con's of stem cell labeling techniques. J. Cell. Physiol. 226: 1–7, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Both embryonic and adult neurogenesis involves the self-renewal/proliferation,survival,migration and lineage differentiation of neural stem/progenitor cells.Such dynamic process is tightly regulated by...  相似文献   

7.
Ming GL  Song H 《Neuron》2011,70(4):687-702
Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms, and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade.  相似文献   

8.
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.  相似文献   

9.
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.  相似文献   

10.
Mechanisms and functional implications of adult neurogenesis   总被引:4,自引:0,他引:4  
Zhao C  Deng W  Gage FH 《Cell》2008,132(4):645-660
The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.  相似文献   

11.
The isolation of neural stem cells from fetal and adult mammalian CNS and the demonstration of functional neurogenesis in adult CNS have offered perspectives for treatment of many devastating hereditary and acquired neurological diseases. Due to this enormous potential, neural stem cells are a subject of extensive molecular profiling studies with a search for new markers and regulatory pathways governing their self-renewal as opposed to differentiation. Several in-depth proteomic studies have been conducted on primary or immortalized cultures of neural stem cells and neural progenitor cells, and yet more remains to be done. Additionally, neurons and glial cells have been obtained from embryonic stem cells and mesenchymal stem cells, and proteins associated with the differentiation process have been characterized to a certain degree with a view to further investigations. This review summarizes recent findings relevant to the proteomics of neural stem cells and discusses major proteins significantly regulated during neural stem cell differentiation with a view to their future use in cell-based regenerative and reparative therapy.  相似文献   

12.
13.
Dong Z  Yang N  Yeo SY  Chitnis A  Guo S 《Neuron》2012,74(1):65-78
Asymmetric division of progenitor/stem cells generates both self-renewing and differentiating progeny and is fundamental to development and regeneration. How this process is regulated in the vertebrate brain remains incompletely understood. Here, we use time-lapse imaging to track radial glia progenitor behavior in the developing zebrafish brain. We find that asymmetric division invariably generates a basal self-renewing daughter and an apical differentiating sibling. Gene expression and genetic mosaic analysis further show that the apical daughter is the source of Notch ligand that is essential to maintain higher Notch activity in the basal daughter. Notably, establishment of this intralineage and directional Notch signaling requires the intrinsic polarity regulator Partitioning defective protein-3 (Par-3), which segregates the fate determinant Mind bomb unequally to the apical daughter, thereby restricting the self-renewal potential to the basal daughter. These findings reveal with single-cell resolution how self-renewal and differentiation become precisely segregated within asymmetrically dividing neural progenitor/stem lineages.  相似文献   

14.
15.
16.
Neurogenesis in the Adult Mammalian Brain   总被引:1,自引:0,他引:1  
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to prove that neurogenesis takes part even in the adult brain. The present review summarizes the data about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and dentate gyrus, neurogenesis appears to proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.  相似文献   

17.
18.
Neurogenesis in the adult mammalian brain   总被引:2,自引:0,他引:2  
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to obtain new results overriding the dogma that neurogenesis is impossible in the adult brain. The present review summarizes the information about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and denate gyrus, neurogenesis appears proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin, and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise very fast to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.  相似文献   

19.
The genesis of vertebrate peripheral ganglia poses the problem of how multipotent neural crest stem cells (NCSCs) can sequentially generate neurons and then glia in a local environment containing strong instructive neurogenic factors, such as BMP2. Here we show that Notch ligands, which are normally expressed on differentiating neuroblasts, can inhibit neurogenesis in NCSCs in a manner that is completely dominant to BMP2. Contrary to expectation, Notch activation did not maintain these stem cells in an uncommitted state or promote their self-renewal. Rather, even a transient activation of Notch was sufficient to cause a rapid and irreversible loss of neurogenic capacity accompanied by accelerated glial differentiation. These data suggest that Notch ligands expressed by neuroblasts may act positively to instruct a cell-heritable switch to gliogenesis in neighboring stem cells.  相似文献   

20.
Neurogenesis is the process in which neurons are generated from neural stem/progenitor cells (NSCs/NPCs). It involves the proliferation and neuronal fate specification/differentiation of NSCs, as well as migration, maturation and functional integration of the neuronal progeny into neuronal network. NSCs exhibit the two essential properties of stem cells: self-renewal and multipotency. Contrary to previous dogma that neurogenesis happens only during development, it is generally accepted now that neurogenesis can take place throughout life in mammalian brains. This raises a new therapeutic potential of applying stem cell therapy for stroke, neurodegenerative diseases and other diseases. However, the maintenance and differentiation of NSCs/NPCs are tightly controlled by the extremely intricate molecular networks. Uncovering the underlying mechanisms that drive the differentiation, migration and maturation of specific neuronal lineages for use in regenerative medicine is, therefore, crucial for the application of stem cell for clinical therapy as well as for providing insight into the mechanisms of human neurogenesis. Here, we focus on the role of bone morphogenetic protein (BMP) signaling in NSCs during mammalian brain development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号