首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of alpha-actin in smooth muscle cells (SMCs) is regulated, in part, by an intronic serum response factor (SRF)-binding CArG element. We have identified a conserved nuclear factor of activated T cells (NFAT) binding site that overlaps this CArG box and tested the hypothesis that this site plays a previously unrecognized role in regulating alpha-actin expression. A reporter construct prepared using a 56-bp region of the mouse alpha-actin first intron containing SRF, NFAT, and AP-1 sites (SNAP) acted as an enhancer element in the context of a minimal thymidine kinase promoter. Basal reporter activity following expression in SMCs was robust and sensitive to the calcineurin-NFAT pathway inhibitors cyclosporin A and FK506. Mutating either the NFAT or SRF binding site essentially abolished reporter activity, suggesting that both NFAT and SRF binding are required. Basal activity in non-smooth muscle HEK293 cells was SRF-dependent but NFAT-independent and approximately 8-fold lower than that in SMCs. Activation of NFAT in HEK293 cells induced an approximately 4-fold increase in activity that was dependent on the integrity of both NFAT and SRF binding sites. NFATc3.SRF complex formation, demonstrated by co-immunoprecipitation, was facilitated by the presence of SNAP oligonucleotide. Inhibition of the calcineurin-NFAT pathway decreased alpha-actin expression in cultured SMCs, suggesting that the molecular interaction of NFAT and SRF at SNAP may be physiologically relevant. These data provide the first evidence that NFAT and SRF may interact to cooperatively regulate SMC-specific gene expression and support a role for NFAT in the phenotypic maintenance of smooth muscle.  相似文献   

2.
3.
The aquaporin (AQP)2 channel mediates the reabsorption of water in renal collecting ducts in response to arginine vasopressin (AVP) and hypertonicity. Here we show that AQP2 expression is induced not only by the tonicity-responsive enhancer binding protein (TonEBP)/nuclear factor of activated T cells (NFAT)5-mediated hypertonic stress response but also by the calcium-dependent calcineurin-NFATc pathway. The induction of AQP2 expression by the calcineurin-NFATc pathway can occur in the absence of TonEBP/NFAT5. Mutational and chromatin immunoprecipitation analyses revealed the existence of functional NFAT binding sites within the proximal AQP2 promoter responsible for regulation of AQP2 by NFATc proteins and TonEBP/NFAT5. Contrary to the notion that TonEBP/NFAT5 is the only Rel/NFAT family member regulated by tonicity, we found that hypertonicity promotes the nuclear translocation of NFATc proteins for the subsequent induction of AQP2 expression. Calcineurin activity was also found to be involved in the induction of TonEBP/NFAT5 expression by hypertonicity, thus further defining the signaling mechanisms that underlie the TonEBP/NFAT5 osmotic stress response pathway. The coordinate regulation of AQP2 expression by both osmotic stress and calcium signaling appears to provide a means to integrate diverse extracellular signals into optimal cellular responses. aquaporin; nuclear factor of activated T cells; tonicity-responsive enhancer binding protein; osmotic response  相似文献   

4.
5.
6.
The vitamin D receptor (VDR) mediates the effects of 1,25(OH)(2)D(3), the active form of vitamin D. The human VDRB1 isoform differs from the originally described VDR by an N-terminal extension of 50 amino acids. Here we investigate cell-, promoter-, and ligand-specific transactivation by the VDRB1 isoform. Transactivation by these isoforms of the cytochrome P450 CYP24 promoter was compared in kidney (HEK293 and COS1), tumor-derived colon (Caco-2, LS174T, and HCT15), and mammary (HS578T and MCF7) cell lines. VDRB1 transactivation in response to 1,25(OH)(2)D(3) was greater in COS1 and HCT15 cells (145%), lower in HEK293 and Caco-2 cells (70-85%) and similar in other cell lines tested. By contrast, on the cytochrome P450 CYP3A4 promoter, 1,25(OH)(2)D(3)-induced VDRB1 transactivation was significantly lower than VDRA in Caco-2 (68%), but comparable to VDRA in HEK293 and COS1 cells. Ligand-dependence of VDRB1 differential transactivation was investigated using the secondary bile acid lithocholic acid (LCA). On the CYP24 promoter LCA-induced transactivation was similar for both isoforms in COS1, whereas in Caco-2 and HEK293 cells VDRB1 was less active. On the CYP3A4 promoter, LCA activation of VDRB1 was comparable to VDRA in all the cell lines tested. Mutational analysis indicated that both the 1,25(OH)(2)D(3) and LCA-regulated activities of both VDR isoforms required a functional ligand-dependent activation function (AF-2) domain. In gel shift assays VDR:DNA complex formation was stronger in the presence of 1,25(OH)(2)D(3) than with LCA. These results indicate that regulation of VDRB1 transactivation activity is dependent on cellular context, promoter, and the nature of the ligand.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号