首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coordinated cell proliferation and ability to form intercellular seals are essential features of epithelial tissue function. Tight junctions (TJs) classically act as paracellular diffusion barriers. More recently, their role in regulating epithelial cell proliferation in conjunction with scaffolding zonula occludens (ZO) proteins has come to light. The kidney collecting duct (CD) is a model of tight epithelium that displays intense proliferation during embryogenesis followed by very low cell turnover in the adult kidney. Here, we examined the influence of each ZO protein (ZO-1, -2 and -3) on CD cell proliferation. We show that all 3 ZO proteins are strongly expressed in native CD and are present at both intercellular junctions and nuclei of cultured CD principal cells (mCCDcl1). Suppression of either ZO-1 or ZO-2 resulted in increased G0/G1 retention in mCCDcl1 cells. ZO-2 suppression decreased cyclin D1 abundance while ZO-1 suppression was accompanied by increased nuclear p21 localization, the depletion of which restored cell cycle progression. Contrary to ZO-1 and ZO-2, ZO-3 expression at intercellular junctions dramatically increased with cell density and relied on the presence of ZO-1. ZO-3 depletion did not affect cell cycle progression but increased cell detachment. This latter event partly relied on increased nuclear cyclin D1 abundance and was associated with altered β1-integrin subcellular distribution and decreased occludin expression at intercellular junctions. These data reveal diverging, but interconnected, roles for each ZO protein in mCCDcl1 proliferation. While ZO-1 and ZO-2 participate in cell cycle progression, ZO-3 is an important component of cell adhesion.  相似文献   

2.
3.
In eukaryotic cells, genomic DNA is organized into a chromatin structure, which not only serves as the template for DNA-based nuclear processes, but also as a platform integrating intracellular and extracellular signals. Although much effort has been spent to characterize chromatin modifying/remodeling activities, little is known about cell signaling pathways targeting these chromatin modulators. Here, we report that cyclin-dependent kinase 1 (CDK1) phosphorylates the histone H2A deubiquitinase Ubp-M at serine 552 (S552P), and, importantly, this phosphorylation is required for cell cycle progression. Mass spectrometry analysis confirmed Ubp-M is phosphorylated at serine 552, and in vitro and in vivo assays demonstrated that CDK1/cyclin B kinase is responsible for Ubp-M S552P. Interestingly, Ubp-M S552P is not required for Ubp-M tetramer formation, deubiquitination activity, substrate specificity, or regulation of gene expression. However, Ubp-M S552P is required for cell proliferation and cell cycle G2/M phase progression. Ubp-M S552P reduces Ubp-M interaction with nuclear export protein CRM1 and facilitates Ubp-M nuclear localization. Therefore, these studies confirm that Ubp-M is phosphorylated at S552 and identify CDK1 as the enzyme responsible for the phosphorylation. Importantly, this study specifically links Ubp-M S552P to cell cycle G2/M phase progression.  相似文献   

4.
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre‐osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up‐regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle‐regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre‐established levels in a given cell type triggers one or more anti‐proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. J. Cell. Physiol. 228: 714–723, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
TRIM27 (tripartite motif-containing 27) is a member of the TRIM (tripartite motif) protein family and participates in a variety of biological processes. Some research has reported that TRIM27 was highly expressed in certain kinds of carcinoma cells and tissues and played an important role in the proliferation of carcinoma cells. However, whether TRIM27 takes part in the progression of lupus nephritis (LN) especially in cells proliferation remains unclear. Our study revealed that the overexpression of TRIM27 was observed in the kidneys of patients with LN, lupus mice and mesangial cells exposed to LN plasma which correlated with the proliferation of mesangial cells and ECM (extracellular matrix) deposition. Downregulation of TRIM27 expression suppressed the proliferation of mesangial cells and ECM accumulation in MRL/lpr mice and cultured human mesangial cells (HMCs) by regulating the FoxO1 pathway. Furthermore, the overexpression of FoxO1 remarkably decreased HMCs proliferation level and ECM accumulation in LN plasma-treated HMCs. In addition, the protein kinase B (Akt) signal pathway inhibitor LY294002 significantly reduced the expression of TRIM27 and inhibited the dysfunction of mesangial cells. These above data suggested that TRIM27 mediated abnormal mesangial cell proliferation in kidney of lupus and might be the potential target for treating mesangial cell proliferation of lupus nephritis.  相似文献   

6.
Neuroblastoma is one of the most severe malignant tumors and accounts for substantial cancer-related mortality in children. Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is highly expressed in various cancers and acts as an important biomarker of poor prognosis. The ablation of G3BP1 inhibited the proliferation and migration of human SHSY5Y cells. Because of its important role in neuroblastoma, the regulation of G3BP1 protein homeostasis was probed. TRIM25, which belongs to the tripartite motif (TRIM) family of proteins, was identified as an interacting partner for G3BP1 using the yeast two-hybrid (Y2H) method. TRIM25 mediates the ubiquitination of G3BP1 at multiple sites and stabilizes its protein level. Then, our study found that TRIM25 knockdown also inhibited the proliferation and migration of neuroblastoma cells. The TRIM25 and G3BP1 double knockdown SHSY5Y cell line was generated, and double knockdown cells exhibited lower proliferation and migration ability than cells with only TRIM25 or G3BP1 knockdown. Further study demonstrated that TRIM25 promotes the proliferation and migration of neuroblastoma cells in a G3BP1-dependent manner. Tumor xenograft assays indicated that the ablation of TRIM25 and G3BP1 synergistically suppressed the tumorigenicity of neuroblastoma cells in nude mice, and TRIM25 promoted the tumorigenicity of G3BP1 intact SHSY5Y cells but not G3BP1 knockout cells. Thus, TRIM25 and G3BP1, two oncogenic genes, are suggested as potential therapeutic targets for neuroblastoma.  相似文献   

7.
Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme consisting of a scaffold subunit (A), a catalytic subunit (C), and a variable regulatory subunit (B). The regulatory B subunits determine the substrate specificity and subcellular localization of the PP2A holoenzyme. Here, we demonstrate that the subcellular localization of the B56γ3 regulatory subunit is regulated in a cell cycle-specific manner. Notably, B56γ3 becomes enriched in the nucleus at the G1/S border and in S phase. The S phase-specific nuclear enrichment of B56γ3 is accompanied by increases of nuclear A and C subunits and nuclear PP2A activity. Overexpression of B56γ3 promotes nuclear localization of the A and C subunits, whereas silencing both B56γ2 and B56γ3 blocks the S phase-specific increase in the nuclear localization and activity of PP2A. In NIH3T3 cells, B56γ3 overexpression reduces p27 phosphorylation at Thr-187, concomitantly elevates p27 protein levels, delays the G1 to S transition, and retards cell proliferation. Consistently, knockdown of endogenous B56γ3 expression reduces p27 protein levels and increases cell proliferation in HeLa cells. These findings demonstrate that the dynamic nuclear distribution of the B56γ3 regulatory subunit controls nuclear PP2A activity, which regulates cell cycle controllers, such as p27, to restrain cell cycle progression, and may be responsible for the tumor suppressor function of PP2A.  相似文献   

8.
Dysregulation of cyclin-dependent kinases (CDKs) can promote unchecked cell proliferation and cancer progression. Although focal adhesion kinase (FAK) contributes to regulating cell cycle progression, the exact molecular mechanism remains unclear. Here, we found that FAK plays a key role in cell cycle progression potentially through regulation of CDK4/6 protein expression. We show that FAK inhibition increased its nuclear localization and induced G1 arrest in B16F10 melanoma cells. Mechanistically, we demonstrate nuclear FAK associated with CDK4/6 and promoted their ubiquitination and proteasomal degradation through recruitment of CDC homolog 1 (CDH1), an activator and substrate recognition subunit of the anaphase-promoting complex/cyclosome E3 ligase complex. We found the FAK N-terminal FERM domain acts as a scaffold to bring CDK4/6 and CDH1 within close proximity. However, overexpression of nonnuclear-localizing mutant FAK FERM failed to function as a scaffold for CDK4/6 and CDH1. Furthermore, shRNA knockdown of CDH1 increased CDK4/6 protein expression and blocked FAK inhibitor–induced reduction of CDK4/6 in B16F10 cells. In vivo, we show that pharmacological FAK inhibition reduced B16F10 tumor size, correlating with increased FAK nuclear localization and decreased CDK4/6 expression compared with vehicle controls. In patient-matched healthy skin and melanoma biopsies, we found FAK was mostly inactive and nuclear localized in healthy skin, whereas melanoma lesions showed increased active cytoplasmic FAK and elevated CDK4 expression. Taken together, our data demonstrate that FAK inhibition blocks tumor proliferation by inducing G1 arrest, in part through decreased CDK4/6 protein stability by nuclear FAK.  相似文献   

9.
Abstract. Objectives: Previously, we have found that the ClC‐3 chloride channel is involved in endothelin‐1 (ET‐1)‐induced rat aortic smooth muscle cell proliferation. The present study was to investigate the role of ClC‐3 in cell cycle progression/distribution and the underlying mechanisms of proliferation. Materials and methods: Small interference RNA (siRNA) is used to silence ClC‐3 expression. Cell proliferation, cell cycle distribution and protein expression were measured or detected with cell counting, bromodeoxyuridine (BrdU) incorporation, Western blot and flow cytometric assays respectively. Results: ET‐1‐induced rat basilar vascular smooth muscle cell (BASMC) proliferation was parallel to a significant increase in endogenous expression of ClC‐3 protein. Silence of ClC‐3 by siRNA inhibited expression of ClC‐3 protein, prevented an increase in BrdU incorporation and cell number induced by ET‐1. Silence of ClC‐3 also caused cell cycle arrest in G0/G1 phase and prevented the cells’ progression from G1 to S phase. Knockdown of ClC‐3 potently inhibited cyclin D1 and cyclin E expression and increased cyclin‐dependent kinase inhibitors (CDKIs) p27KIP and p21CIP expression. Furthermore, ClC‐3 knockdown significantly attenuated phosphorylation of Akt and glycogen synthase kinase‐3β (GSK‐3β) induced by ET‐1. Conclusion: Silence of ClC‐3 protein effectively suppressed phosphorylation of the Akt/GSK‐3β signal pathway, resulting in down‐regulation of cyclin D1 and cyclin E, and up‐regulation of p27KIP and p21CIP. In these BASMCs, integrated effects lead to cell cycle G1/S arrest and inhibition of cell proliferation.  相似文献   

10.
Inositol polyphosphate 4 phosphatase type I enzyme (INPP4A) has a well-documented function in the cytoplasm where it terminates the phosphatidylinositol 3-kinase (PI 3-K) pathway by acting as a negative regulator. In this study, we demonstrate for the first time that INPP4A shuttles between the cytoplasm and the nucleus. Nuclear INPP4A is enzymatically active and in dynamic equilibrium between the nucleus and cytoplasm depending on the cell cycle stage, with highest amounts detected in the nucleus during the G0/G1 phase. Moreover, nuclear INPP4A is found to have direct proliferation suppressive activity. Cells constitutively overexpressing nuclear INPP4A exhibit massive apoptosis. In human tissues as well as cell lines, lower nuclear localization of INPP4A correlate with cancerous growth. Together, our findings suggest that nuclear compartmentalization of INPP4A may be a mechanism to regulate cell cycle progression, proliferation and apoptosis. Our results imply a role for nuclear-localized INPP4A in tumor suppression in humans.  相似文献   

11.
12.
Neuropathy target esterase (NTE) is a novel phospholipase B and plays a role in phospholipid homeostasis. Although over-expression of NTE inhibits cell division, the role of NTE in cell proliferation is still unknown. In the current study, we firstly used synchronous HeLa cells to study the expression profile of NTE during the cell cycle. NTE protein and activity are regulated during the cell cycle with highest level at G1 and lowest at G2/M phase. However, NTE mRNA levels are constant during the cell cycle. The role of NTE in cell proliferation was investigated by short hairpin RNA (shRNA) to suppress the expression of NTE. Knockdown of NTE significant down-regulated of NTE expression and reduced the glycerophosphocholine level. However, suppression of NTE did not affect phosphatidylcholine content or cell cycle progression. In addition, NTE was demonstrated to be degraded by the ubiquitin-proteasome pathway. These results suggested for the first time that NTE is a cell cycle-dependent protein, but is not essential for cell proliferation, and the ubiquitin-mediated proteolysis may be involved in the regulation of NTE during the cell cycle.  相似文献   

13.
Staurosporine (SSP) is an inhibitor of a variety of protein kinases with an especially high affinity towards protein kinase C. Whereas SSP has been shown to halt the cell cycle progression of various normal, nontransformed cell types in G1, most virus transformed or tumor cells are unaffected in G1 but arrest in G2 phase. SSP has also been observed to increase the appearance of cells with higher DNA content, suggestive of endoreduplication, in cultures of tumor cells. Using multivariate flow cytometry (DNA content vs. expression of cyclin B, nucleolar p120 protein, or protein reactive with Ki-67 antibody) which makes it possible to discriminate cells with identical DNA content but at different phases of the cycle, we have studied the cell cycle progression of human lymphocytic leukemic MOLT-4 cells in the presence of 0.1 μM SSP.MOLT-4 cells did not arrest in G1 or G2 phase in the presence of the inhibitor. Rather, they failed to undergo cytokinesis, entering G1 phase at higher DNA ploidy (tetraploidy; G1T), and then progressed through ST (rereplication) into G2T and MT. The rates of entrance to G2 and G2T were essentially identical, indicating that the rates of cell progression through S and ST as well as through G2 and G2T, respectively, were similar. Cells entrance to mitosis and mitotic chromatin condensation were also similar at the diploid and tetraploid DNA content level and were unaffected by 0.1 μM SSP. No evidence of growth imbalance (altered protein or RNA to DNA ratio) was observed in the case of tetraploid cells. The data show that, in the case of MOLT-4 cells, all events associated with the chromosome or DNA cycle were unaffected by SSP; the only target of the inhibitor appears to be kinase(s) controlling cytokinesis. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G0/G1 cell cycle arrest and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G0/G1 cell cycle phase arrest and increased levels of p27kip1 in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G0 state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.  相似文献   

15.
16.
Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading.  相似文献   

17.
18.
Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA–mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.  相似文献   

19.
Cellular supply of dNTPs is essential in the DNA replication and repair processes. Here we investigated the regulation of thymidine kinase 1 (TK1) in response to DNA damage and found that genotoxic insults in tumor cells cause up-regulation and nuclear localization of TK1. During recovery from DNA damage, TK1 accumulates in p53-null cells due to a lack of mitotic proteolysis as these cells are arrested in the G2 phase by checkpoint activation. We show that in p53-proficient cells, p21 expression in response to DNA damage prohibits G1/S progression, resulting in a smaller G2 fraction and less TK1 accumulation. Thus, the p53 status of tumor cells affects the level of TK1 after DNA damage through differential cell cycle control. Furthermore, it was shown that in HCT-116 p53−/− cells, TK1 is dispensable for cell proliferation but crucial for dTTP supply during recovery from DNA damage, leading to better survival. Depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and generates more cell death. Altogether, our data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G2 arrest.  相似文献   

20.
Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号