首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cooperation between epithelial and mesenchymal cells is essential for embryonic development and probably plays an important role in pathological phenomena such as wound healing and tumor progression. It is well known that many epithelial tumors are characterized by the local accumulation of connective tissue cells and extracellular material; this phenomenon has been called the stroma reaction. One of the cellular components of the stroma reaction is the myofibroblast, a modulated fibroblast which has acquired the capacity to neoexpress alpha-smooth muscle actin, the actin isoform typical of vascular smooth muscle cells, and to synthesize important amounts of collagen and other extracellular matrix components. It is now well accepted that the myofibroblast is a key cell for the connective tissue remodeling which takes place during wound healing and fibrosis development. Myofibroblasts are capable of remodeling connective tissue but also interact with epithelial cells and other connective tissue cells and may thus control such phenomena as tumor invasion and angiogenesis. In this review we discuss the mechanisms of myofibroblast evolution during fibrotic and malignant conditions and the interaction of myofibroblasts with other cells in order to control tumor progression. On this basis we suggest that the myofibroblast may represent a new important target of antitumor therapy.  相似文献   

3.
Inflammatory infiltration of tumor stroma is an integral reflection of reactions that develop in response to any damage to tumor cells including immune responses to antigens or necrosis caused by vascular disorders. In this review, we use the term “immune-inflammatory response” (IIR) that allows us to give an integral assessment of the cellular composition of the tumor microenvironment. Two main types of IIRs are discussed: type 1 and 2 T-helper reactions (Th1 and Th2), as well as their inducers: immunosuppressive responses and reactions mediated by Th22 and Th17 lymphocytes and capable of modifying the main types of IIRs. Cellular and molecular manifestations of each IIR type are analyzed and their general characteristics and roles in tissue regeneration and tumor growth are presented. Since inflammatory responses in a tumor can also be initiated by innate immunity mechanisms, special attention is given to inflammation based on them. We emphasize that processes accompanying tissue regeneration are prototypes of processes underlying cancer progression, and these processes have the same cellular and molecular substrates. We focus on evidence that tumor progression is mainly contributed by processes specific for the second phase of “wound healing” that are based on the Th2-type IIR. We emphasize that the effect of various types of immune and stroma cells on tumor progression is determined by the ability of the cells and their cytokines to promote or prevent the development of Th1- or Th2-type of IIR. Finally, we supposed that the nonspecific influence on the tumor caused by the cytokine context of the Th1- or Th2-type microenvironment should play a decisive role for suppression or stimulation of tumor growth and metastasis.  相似文献   

4.
Carcinomas are composed of parenchymal and stromal elements, and the malignant behavior is principally dictated by the cancer cells. However, the malignant tumors not merely grow into a preexisting interstitial tissue, but they actively form a new stroma and modify their composition. Thus, the tumor stroma is significantly different from that of the neighboring tissues. Cancer cells may alter their stroma by cell-to-cell contact, soluble factors or by modification of the extracellular matrix (ECM), they induce myofibroblast differentiation and govern the desmoplastic stroma reaction. On the other hand, the stromal cells (especially the myofibroblasts) are able to modify the phenotype, invasiveness, metastatic capacity of carcinomas, typically promoting the progression. Regarding pancreatic cancer, the pancreatic stellate cells (PSCs) seem to be the key elements in the cross-talk between the parenchymal cells and the desmoplastic stroma. The tumor stroma is also rich in tumor-associated macrophages (TAM), but their role in the malignant process is contradictory and may be different in various tumor types, but most studies suggest a negative impact on the tumor growth. The relationship between the parenchymal and stromal elements is highly complex, they mutually alter their characteristics. Because the neostroma of the carcinomas largely seems to promote the invasiveness of the malignant tumors, novel therapeutic strategies are being evaluated targeting the stromal elements, with some encouraging, but still fragmentary results.  相似文献   

5.
Luo G  Long J  Zhang B  Liu C  Xu J  Ni Q  Yu X 《Biochimica et biophysica acta》2012,1826(1):170-178
Pancreatic ductal adenocarcinom a (PDA) has two exceptional features. First, it is a highly lethal disease, with a median survival of less than 6months and a 5-year survival rate less than 5%. Second, PDA tumor cells are surrounded by an extensive stroma, which accounts for up to 90% of the tumor volume. It is well recognized that stromal microenvironment can accelerate malignant transformation, tumor growth and progression. More importantly, the interaction loop between PDA and its stroma greatly contributes to tumor growth and progression. We propose that the extensive stroma of PDA is closely linked to its poor prognosis. An improved understanding of the mechanisms that contribute to pancreatic tumor growth and progression is therefore urgently needed. Targeting the stroma may thus provide novel prevention, earlier detection and therapeutic options to this deadly malignancy. Accordingly, in this review, we will summarize the mechanism of PDA stroma formation, the role of the stroma in tumor progression and therapy resistance and the potential of stroma-targeted therapeutics strategies.  相似文献   

6.
As cells undergo oncogenic transformation and as malignant cells arrive at metastatic sites, a complex interplay occurs with the surrounding stroma. This dialogue between the tumor and stroma ultimately dictates the success of the tumor cells in the given microenvironment. As a result, understanding the molecular mechanisms at work is important for developing new therapeutic modalities. Proteases are major players in the interaction between tumor and stroma. This review will focus on the role of proteases in modulating tumor-stromal interactions of both primary breast and prostate tumors as well as at bone metastatic sites in a way that favors tumor growth.  相似文献   

7.
As cells undergo oncogenic transformation and as malignant cells arrive at metastatic sites, a complex interplay occurs with the surrounding stroma. This dialogue between the tumor and stroma ultimately dictates the success of the tumor cells in the given microenvironment. As a result, understanding the molecular mechanisms at work is important for developing new therapeutic modalities. Proteases are major players in the interaction between tumor and stroma. This review will focus on the role of proteases in modulating tumor–stromal interactions of both primary breast and prostate tumors as well as at bone metastatic sites in a way that favors tumor growth.  相似文献   

8.
Myofibroblasts were successfully grown in tissue culture from the connective tissue stroma of three human breast adenocarcinomas. These cells had slower growth kinetics than fibroblasts from normal human dermis, as did myofibroblasts from two granulating wounds. Electron microscopy of breast cancer slices and tissue cultures of these specimens confirmed the presence of myofibroblasts in both. In early passages, the specificity of carcinoma-derived myofibroblast growth kinetics is preserved. The exact role of myofibroblasts in breast cancer, whether helping or hindering tumor growth, remains undetermined.  相似文献   

9.
In the past century, gradual but sustained advances in our understanding of the molecular mechanisms involved in the growth and invasive properties of cancer cells have led to better management of tumors. However, many tumors still escape regulation and progress to advanced disease. Until recently, there has not been an organized and sustained focus on the “normal” cells in the vicinity of tumors. Interactions between the tumor and these host cells, as well as autonomous qualities of the host cells themselves, might explain why tumors in people with histologically similar cancers often behave and respond differently to treatment. Cells of the tumor microenvironment, variously referred to as cancer stroma, reactive stroma or carcinoma-associated fibroblasts (CAF), exist in close proximity to the cancer epithelium. Both stromal and epithelial phenotypes co-evolve during tumorigenesis and it is now becoming clear that these stromal cells may not be the innocent bystanders they had been widely thought to be, but rather may be active contributors to carcinogenesis. Our group and others have shown the important role that CAF play in the progression of cancer. In this article we will address current trends in the study of the interactions between cancer stroma and tumor cells in different organs. We will also highlight perceived knowledge gaps and suggest research areas that need to be further explored to provide new targets for anticancer therapies.  相似文献   

10.
Phenotypic and functional characteristics of tumor associated fibroblasts (TAF) in contrast to normal fibroblasts are reviewed in this first synopsis (part I). Terms as tumor stroma, desmo-plasia, TAF, myofibroblast, and fetal-type fibroblast are defined, and experimental systems to study heterologous cell interactions are presented. While we only start to gather information on the genotype of TAF, a broad range of data deals with the expression profile of these cells, covering e.g. ECM and ECM-modulating molecules, growth factors and cytokines. Summarizing the recent state of knowledge indicates that TAF provide sources for tumor diagnosis and therapy, that have to be further defined in an organ-specific approach in terms of the functional impact on the tumor cell and its environment (see part II).  相似文献   

11.
The phrase translational research' conveys the idea of the pursuit of applications for the treatment of human disease.The myofibroblast, long known for having a role in wound-healing, and for its presence in fibrotic conditions and tumour stroma, is becoming a focus for translational research, not least through its increasingly documented role as a tumour-promoting cell.In fibroproliferative conditions, cancer and tissue engineering, the myofibroblast, derived partly and possibly from circulating bone-marrow-derived cells and epithelial-to-mesenchymal transformation, is attracting great attention.In cancer, this cell was initially regarded as a barrier to tumour dissemination, but there is now a growing body of evidence to indicate that it is an active participant in tumour progression.While the involvement of the myofibroblast in these pathological processes is pushing the myofibroblast into the limelight of translational medicine as a target for potential anti-fibrotic and anti-cancer therapy, there are still numerous indications from the literature that the myofibroblast is a poorly understood cell in terms of its differentiation.Partly, this is due to a failure to appreciate the contribution of electron microscopy to understanding the nature of this cell.This paper, therefore, is devoted to detailing the principal phenotypic characteristics of the myofibroblast and promotes the argument that understanding how the myofibroblast carries out its roles in normal biological and in pathological processes will be enhanced by a sound understanding of its cellular differentiation, which in turn arguably demands a significant ultrastructural input.  相似文献   

12.
The causes of fibrosis, or the inappropriate wound healing, that follows chronic intestinal inflammation are not well defined and likely involve the contributions of multiple cellular mechanisms. As other articles in this series confirm, inflammatory cytokines clearly play a role in driving cell differentiation to the myofibroblast phenotype, promoting proliferation and extracellular matrix deposition that are characteristic of fibrotic tissue. However, controlling the balance of cytokines produced and process of myofibroblast differentiation appears to be more complex. This review considers ways in which hyaluronan, an extracellular matrix component that is remodeled during the progression of colitis, may provide indirect as well as direct cues that influence the balancing act of intestinal wound healing.  相似文献   

13.
Peritoneal metastases are one reason for the poor prognosis of scirrhous gastric cancer (SGC), and myofibroblast provides a favorable environment for the peritoneal dissemination of gastric cancer. The aim of this study was to determine whether myofibroblast originates from peritoneal mesothelial cells under the influence of the tumor microenvironment. Immunohistochemical studies of peritoneal biopsy specimens from patients with peritoneal lavage cytological (+) status demonstrate the expression of the epithelial markers cytokeratin in fibroblast-like cells entrapped in the stroma, suggesting that these cells stemmed from local conversion of mesothelial cells. To confirm this hypothesis in vitro, we co-incubated mesothelial cells with SGC or non-SGC to investigate morphology and function changes. As we expected, mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype with loss of epithelial morphology and decrease in the expression of cytokeratin and E-cadherin when exposed to conditioned medium from HSC-39, and the induction of mesothelial cells can be abolished using a neutralizing antibody to transforming growth factor-beta1 (TGF-β1) as well as by pre-treatment with SB431542. Moreover, we found that these mesothelial cells-derived cells exhibit functional properties of myofibroblasts, including the ability to increase adhesion and invasion of SGC. In summary, our current data demonstrated that mesothelial cells are a source of myofibroblasts under the SGC microenvironment which provide a favorable environment for the dissemination of gastric cancer; TGF-β1 produced by autocrine/paracrine in peritoneal cavity may play a central role in this pathogenesis.  相似文献   

14.
The myofibroblast is a mesenchymal cell characterized by synthesis of the extracellular matrix, plus contractile and secretory activities. Myofibroblasts participate in physiological tissue repair, but can also cause devastating fibrosis. They are present in the tumor stroma of carcinomas and contribute to tumor growth and spreading. As myofibroblasts derive from various cell types and appear in a variety of tissues, there is marked variability in their phenotype. As regulatory mechanisms of wound healing are likely conserved among vertebrates, detailed knowledge of these mechanisms in more distant species will help to distinguish general from specific phenomena. To provide this as yet missing comparison, we analyzed the impact of the chemical inhibition of TGF-beta signaling on gene expression in chicken embryo dermal myofibroblasts. We revealed genes previously reported in mammalian systems (e.g. SPON2, ASPN, COMP, LUM, HAS2, IL6, CXCL12, VEGFA) as well as novel TGF-beta dependent genes, among them PGF, VEGFC, PTN, FAM180A, FIBIN, ZIC1, ADCY2, RET, HHIP and DNER. Inhibition of TGF-beta signaling also induced multiple genes, including NPR3, AGTR2, MTUS1, SOD3 and NOV. We also analyzed the effects of long term inhibition, and found that it is not able to induce myofibroblast dedifferentiation.  相似文献   

15.
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment play major roles in supporting cancer progression. A previous report showed that SPIN90 downregulation is correlated with CAF activation and that SPIN90-deficient CAFs promote breast cancer progression. However, the mechanisms that mediate cancer-stroma interaction and how such interactions regulate cancer progression are not well understood. Here, we show that extra domain A (EDA)-containing fibronectin (FN), FN(+)EDA, produced by mouse embryonic fibroblasts (MEFs) derived from Spin90-knockout (KO) mice increases their own myofibroblast differentiation, which facilitates breast cancer progression. Increased FN(+)EDA in Spin90-KO MEFs promoted fibril formation in the extracellular matrix (ECM) and specifically interacted with integrin α4β1 as the mediating receptor. Moreover, FN(+)EDA expression by Spin90-KO MEFs increased proliferation, migration, and invasion of breast cancer cells. Irigenin, a specific inhibitor of the interaction between integrin α4β1 and FN(+)EDA, significantly blocked the effects of FN(+)EDA, such as fibril formation by Spin90-KO MEFs and proliferation, migration, and invasion of breast cancer cells. In orthotopic breast cancer mouse models, irigenin injection remarkably reduced tumor growth and lung metastases. It was supported by that FN(+)EDA in assembled fibrils was accumulated in cancer stroma of human breast cancer patients in which SPIN90 expression was downregulated. Our data suggest that SPIN90 downregulation increases FN(+)EDA and promotes ECM stiffening in breast cancer stroma through an assembly of long FN(+)EDA-rich fibrils; moreover, engagement of the Integrin α4β1 receptor facilitates breast cancer progression. Inhibitory effects of irigenin on tumor growth and metastasis suggest the potential of this agent as an anticancer therapeutic.  相似文献   

16.
Tumor stroma formation results from the interaction of tumor cells and their products with the host and certain of its normal defense mechanisms, particularly the clotting and fibrinolytic systems. It is a process in which tumor cells render local venules and veins hyperpermeable with the result that fibrinogen and other proteins extravasate and clot, forming an extravascular crosslinked fibrin gel. Coagulation is mediated by an interaction between extravasated plasma clotting factors and tumor-associated and perhaps other tissue procoagulants. Parallel activation of the fibrinolytic system leads to substantial fibrin turnover, but fibrin nonetheless accumulates in amounts, variable from tumor to tumor, that are sufficient to provide a provisional stroma. This provisional stroma imposes on tumor cells a structure that persists even as tumor cells multiply and as the fibrin provisional stroma is replaced by mature connective tissue. The provisional fibrin stroma also serves to regulate the influx of macrophages, and perhaps other inflammatory cells, but at the same time, and in ways that are not fully understood, facilitates the inward migration of new blood vessels and fibroblasts, integral components of mature tumor stroma. Ascites tumors differ from solid tumors in that fibrin gel is not ordinarily deposited in body cavities and, as a result, there is no provisional stroma to impose an initial structure. Tumor stroma generation resembles the process of wound healing in many respects. However, it differs in the mechanism of its initiation, and in the apparent lack of a role for platelets. It also differs fundamentally in that invading tumor cells continually render new vessels hyperpermeable to plasma, thus perpetuating the cycle of extravascular fibrin deposition. In this sense, tumors behave as wounds that do not heal. Largely neglected in this review has been discussion of the numerous cytokines, mitogens, and growth factors that are widely believed to play important roles in tumor angiogenesis and wound healing; i.e., PDGF, FGF, EGF, TGF alpha, TGF beta, TNF, interferons, etc. This omission has been intentional, and for two reasons. First, these cytokines have already received considerable attention [100,123-128]. Second, it is not yet clear how closely the actions of these molecules, as described in vitro, relate to their functions in vivo. At present we are deluged with a surfeit of factors that have the capacity to induce new blood vessel formation in angiogenesis assays; these factors include not only peptides but lipids and even ions [126,129-131].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.  相似文献   

18.
This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.  相似文献   

19.
In this review, the features of the regeneration of corneal tissue and its disorders leading to the development of fibrosis are considered. The data on the presence of stem (clonogenic) cell pool in the corneal tissues (epithelium, endothelium, stroma) are given; these cells can serve as a source for regeneration of the tissues at injury or various diseases. The main steps of regeneration of corneal tissues and their disorders that lead to outstripping proliferation of myofibroblasts and secretion of extracellular matrix in the wound area and eventually cause the formation of connective tissue scar and corneal opacity are considered. Particular attention is given to the successes of translational medicine in the treatment of corneal tissue fibrosis. The methods of cell therapy aimed at the restoration of stem cell pool of corneal tissues are the most promising. Gene therapy provides more opportunities; one of its main objectives is the suppression of the myofibroblast proliferation responsible for the development of fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号