共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell cycle (Georgetown, Tex.)》2013,12(3):242-249
Glioblastoma (GBM) remains one of the most challenging solid cancers to treat due to its highly proliferative, angiogenic and invasive nature. Over 80% of adult high-grade astrocytomas show inactivation of the Rb tumor suppressor pathway. Therefore, one possible therapeutic strategy would be to directly modulate cyclin dependent kinase (CDK) activity resulting in inhibition of Rb phosphorylation and cell cycle progression. The small molecule CDK inhibitor, flavopiridol, has demonstrated antitumor activity in human xenograft models and is currently in clinical trials showing efficacy in patients with advanced disease. We have developed an experimental animal model using the murine glioma GL261 cells as a novel in vivo system to screen potential therapeutic agents for GBM. Results of in vitro testing demonstrate that flavopiridol has several relevant clinical characteristics such as its ability to: 1.inhibit cell growth; 2.inhibit cell migration;3.decrease expression of CDK inhibitor cyclin D1, CDK4 and p21; 4.induce apoptosis in cells with high levels of p27 expression; and5.decrease the expression of the anti-apoptotic protein Bcl-2. The mechanism by which flavopiridol induces apoptosis is mitochondrial-mediated. We demonstrate by electron microscopy and immunohistochemistry that drug treatment induces mitochondrial damage that was accompanied by the release of cytochrome c into the cytosol together with the translocation of apoptosis inducing factor (AIF) into the nucleus. This finding in murine glioma cells differs markedly from the mechanism of flavopiridol-induced apoptosis cell death reported by us for human glioma cells (Alonso et al., Mol Cancer Ther 2003; 2:139) where drug treatment induced a caspase- and cytochrome c-independent pathway in the absence of detectable damage to mitochondria. In apoptotic human glioma cells only translocation of AIF into the nucleus occurred. Thus, the same drug induces apoptosis inkills different types of glioma cells by different mitochondrial-dependent pathways. 相似文献
2.
Flavopiridol inhibits the Growth of GL261 Gliomas In Vivo: Implications for Malignant Glioma Therapy
《Cell cycle (Georgetown, Tex.)》2013,12(2):218-222
The mechanism of action of many chemotherapeutic agents targets the cell cycle. Recently, we demonstrated cytotoxic and other anti-tumor effects of flavopiridol, the first synthetic cyclin dependent kinase (CDK) inhibitor to enter clinical trials, on the murine GL261 glioma cell line in vitro (Newcomb et al., Cell Cycle 2003; 2:243). Given that flavopiridol has demonstrated anti-tumor activity in several human xenograft models, we wanted to evaluate it for anti-glioma activity in vivo in our established subcutaneous and intracranial GL261 experimental tumor models. In particular, the intracranial animal model recapitulates many of the histopathological and biological features of human high-grade glioma including both necrosis with pseudopalisading and invasion of the brain adjacent to tumor. Here we tested the activity of flavopiridol against tumors formed by GL261 cells, first as subcutaneous implants, and then in the intracranial model. We demonstrate efficacy of flavopiridol as a single modality treatment in delaying tumor growth in both animal models. We hypothesize that flavopiridol treatment induced tumor growth delay by two possible mechanisms involving growth arrest combined with recruitment of tumor cells to S-phase. Based on our findings, flavopiridol should be considered as a treatment approach for patients with high-grade glioma. 相似文献
3.
Flavopiridol inhibits the growth of GL261 gliomas in vivo: implications for malignant glioma therapy
Newcomb EW Tamasdan C Entzminger Y Arena E Schnee T Kim M Crisan D Lukyanov Y Miller DC Zagzag D 《Cell cycle (Georgetown, Tex.)》2004,3(2):230-234
The mechanism of action of many chemotherapeutic agents targets the cell cycle. Recently, we demonstrated cytotoxic and other anti-tumor effects of flavopiridol, the first synthetic cyclin dependent kinase (CDK) inhibitor to enter clinical trials, on the murine GL261 glioma cell line in vitro (Newcomb et al., Cell Cycle 2003; 2:243). Given that flavopiridol has demonstrated anti-tumor activity in several human xenograft models, we wanted to evaluate it for anti-glioma activity in vivo in our established subcutaneous and intracranial GL261 experimental tumor models. In particular, the intracranial animal model recapitulates many of the histopathological and biological features of human high-grade glioma including both necrosis with pseudopalisading and invasion of the brain adjacent to tumor. Here we tested the activity of flavopiridol against tumors formed by GL261 cells, first as subcutaneous implants, and then in the intracranial model. We demonstrate efficacy of flavopiridol as a single modality treatment in delaying tumor growth in both animal models. We hypothesize that flavopiridol treatment induced tumor growth delay by two possible mechanisms involving growth arrest combined with recruitment of tumor cells to S-phase. Based on our findings, flavopiridol should be considered as a treatment approach for patients with high-grade glioma. 相似文献
4.
Newcomb EW Tamasdan C Entzminger Y Alonso J Friedlander D Crisan D Miller DC Zagzag D 《Cell cycle (Georgetown, Tex.)》2003,2(3):243-250
Glioblastoma (GBM) remains one of the most challenging solid cancers to treat due to its highly proliferative, angiogenic and invasive nature. The small molecule CDK inhibitor, flavopiridol, has demonstrated antitumor activity in human xenograft models and is currently in clinical trials showing efficacy in patients with advanced disease. We have developed an experimental animal model using the murine glioma GL261 cells as a novel in vivo system to screen potential therapeutic agents for GBM. Results of in vitro testing demonstrate that flavopiridol has several relevant clinical characteristics such as its ability to: 1. inhibit cell growth; 2. inhibit cell migration; 3. decrease expression of cyclin D1, CDK4 and p21; 4. induce apoptosis in cells with high levels of p27 expression; and 5. decrease the expression of the anti-apoptotic protein Bcl-2. The mechanism by which flavopiridol induces apoptosis is mitochondrial-mediated. We demonstrate by electron microscopy and immunohistochemistry that drug treatment induces mitochondrial damage that was accompanied by the release of cytochrome c into the cytosol together with the translocation of apoptosis inducing factor (AIF) into the nucleus. This finding in murine glioma cells differs from the mechanism of flavopiridolinduced cell death reported by us for human glioma cells (Alonso et al., Mol Cancer Ther 2003; 2:139) where drug treatment induced a caspase- and cytochrome c-independent pathway in the absence of detectable damage to mitochondria. In apoptotic human glioma cells only translocation of AIF into the nucleus occurred. Thus, the same drug kills different types of glioma cells by different mitochondrial-dependent pathways. 相似文献
5.
Danielle N. Renner Fang Jin Adam J. Litterman Alexis J. Balgeman Lisa M. Hanson Jeffrey D. Gamez Michael Chae Brett L. Carlson Jann N. Sarkaria Ian F. Parney John R. Ohlfest Istvan Pirko Kevin D. Pavelko Aaron J. Johnson 《PloS one》2015,10(5)
Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257–264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257–264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257–264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo. 相似文献
6.
《Cell cycle (Georgetown, Tex.)》2013,12(16):2586-2591
We studied effects of tetrac (tetraiodothyroacetic acid) on survival of GL261, a murine brain tumor cell line, following single doses of 250 kVp x-rays and on repair of damage (sublethal and potentially lethal damage repair; SLDR, PLDR) in both exponential and plateau phase cells. Cells were exposed to 2 μM tetrac (1 h at 37oC) prior to x-irradiation. At varying times after irradiation, cells were re-plated in medium without tetrac. Two weeks later, colonies were counted and results analyzed using either the linear-quadratic (LQ) or single-hit, multitarget (SHMT) formalisms. Tetrac sensitized both exponential and plateau phase cells to x-irradiation, as shown by a decrease in the quasi-threshold dose (Dq), leading to an average tetrac enhancement factor (ratio of SF2 values) of 2.5. Tetrac reduced SLDR in exponential cells by a factor of 1.8. In plateau phase cells there was little expression of SLDR, but tetrac produced additional cell killing at 1-4 h after the first dose. For PLDR expression in exponential cells, tetrac inhibited PLDR by a factor of 1.9, and in plateau phase cells, tetrac decreased PLDR expression by a factor of 3.4. These data show that the decreased Dq value seen after single doses of x-rays with tetrac treatment is also accompanied by a significant decrease in recovery from sublethal and potentially lethal damage. 相似文献
7.
Zineb Belcaid Jillian A. Phallen Jing Zeng Alfred P. See Dimitrios Mathios Chelsea Gottschalk Sarah Nicholas Meghan Kellett Jacob Ruzevick Christopher Jackson Emilia Albesiano Nicholas M. Durham Xiaobu Ye Phuoc T. Tran Betty Tyler John W. Wong Henry Brem Drew M. Pardoll Charles G. Drake Michael Lim 《PloS one》2014,9(7)
Background
Glioblastoma (GBM) is the most common malignant brain tumor in adults and is associated with a poor prognosis. Cytotoxic T lymphocyte antigen -4 (CTLA-4) blocking antibodies have demonstrated an ability to generate robust antitumor immune responses against a variety of solid tumors. 4-1BB (CD137) is expressed by activated T lymphocytes and served as a co-stimulatory signal, which promotes cytotoxic function. Here, we evaluate a combination immunotherapy regimen involving 4-1BB activation, CTLA-4 blockade, and focal radiation therapy in an immune-competent intracranial GBM model.Methods
GL261-luciferace cells were stereotactically implanted in the striatum of C57BL/6 mice. Mice were treated with a triple therapy regimen consisted of 4-1BB agonist antibodies, CTLA-4 blocking antibodies, and focal radiation therapy using a small animal radiation research platform and mice were followed for survival. Numbers of brain-infiltrating lymphocytes were analyzed by FACS analysis. CD4 or CD8 depleting antibodies were administered to determine the relative contribution of T helper and cytotoxic T cells in this regimen. To evaluate the ability of this immunotherapy to generate an antigen-specific memory response, long-term survivors were re-challenged with GL261 glioma en B16 melanoma flank tumors.Results
Mice treated with triple therapy had increased survival compared to mice treated with focal radiation therapy and immunotherapy with 4-1BB activation and CTLA-4 blockade. Animals treated with triple therapy exhibited at least 50% long-term tumor free survival. Treatment with triple therapy resulted in a higher density of CD4+ and CD8+ tumor infiltrating lymphocytes. Mechanistically, depletion of CD4+ T cells abrogated the antitumor efficacy of triple therapy, while depletion of CD8+ T cells had no effect on the treatment response.Conclusion
Combination therapy with 4-1BB activation and CTLA-4 blockade in the setting of focal radiation therapy improves survival in an orthotopic mouse model of glioma by a CD4+ T cell dependent mechanism and generates antigen-specific memory. 相似文献8.
平流层臭氧破坏导致地球表面紫外辐射(主要是UV-B)增强逐渐受到人们重视。由于蓝藻在生态系统中的重要性和在生物进化过程中的特殊性,用于研究UV-B对生物体的影响具有诸多优势。目前国内关于UV-B与蓝藻的研究报道较少,所以本文介绍了近年来国外该领域的相关研究,主要包括UV-B对蓝藻生物量、光合机构以及固氮等方面的影响,同时着重介绍了蓝藻对UV-B的适应策略。 相似文献
9.
The survival of ultraviolet (UV)-irradiated cultures of Haemophilus influenzae Rd is determined by at least two responses: (i) excision-repair ability and (ii) UV-induced cell lysis. An UV-resistant mutant, BC200, has the same capabilities as the wild type, Rd, for excising dimers but does not exhibit lysis. Lytic response is dose-dependent. Relative to the wild type, a lower dose of UV causes lysis of a UV-sensitive mutant, BC100, which is incapable of excising thymine dimers. A lytic protein is present in cultures undergoing lysis. Synthesis of this protein is initiated 45 to 60 min after irradiation. Lysis appears to be due to derepression of a defective prophage which codes for an endolysin-like lytic enzyme. 相似文献
10.
11.
Mutsuko Minata Alessandra Audia Junfeng Shi Songjian Lu Joshua Bernstock Marat S. Pavlyukov Arvid Das Sung-Hak Kim Yong Jae Shin Yeri Lee Harim Koo Kirti Snigdha Indrayani Waghmare Xing Guo Ahmed Mohyeldin Daniel Gallego-Perez Jia Wang Dongquan Chen Krishna P. Bhat 《Cell reports》2019,26(7):1893-1905.e7
12.
紫外线辐射对生物体危害日趋严重,逐渐引起了人们的重视.由于蓝藻在生物进化中的特殊性和在生态系统中的重要性,用于研究UV-B对生物体的影响具有诸多优势,目前国内关于UV-B对蓝藻的影响相关报道较少.本文介绍了近年来国外该领域的相关研究,主要包括UV-B对蓝藻生物量、生理效应,特别是光合作用等方面的影响,同时着重介绍了蓝藻中的紫外吸收物质的研究现状,并进一步探讨了其应用情况. 相似文献
13.
Mya S. Thu Joseph Najbauer Stephen E. Kendall Ira Harutyunyan Nicole Sangalang Margarita Gutova Marianne Z. Metz Elizabeth Garcia Richard T. Frank Seung U. Kim Rex A. Moats Karen S. Aboody 《PloS one》2009,4(9)
Background
Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval.Methodology
For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro) on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model.Conclusion
FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly supports the use of FE-Pro-labeled NSCs for real-time tracking in the clinical trial under development: “A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically modified Neural Stem Cells Expressing Escherichia coli Cytosine Deaminase for Treatment of Recurrent High-Grade Gliomas”. 相似文献14.
Alessandra S.K. Tamajusuku Emilly S. Villodre Romela Paulus Robson Coutinho‐Silva Ana M.O. Battasstini Márcia R. Wink Guido Lenz 《Journal of cellular biochemistry》2010,109(5):983-991
Gliomas have one of the worst prognosis among cancers. Their resistance to cell death induced by endogenous neurotoxic agents, such as extracellular ATP, seems to play an important role in their pathobiology since alterations in the degradation rate of extracellular ATP drastically affects glioma growth in rats. In the present work we characterized the mechanisms of cell death induced by extracellular ATP in a murine glioma cell line, GL261. ATP and BzATP, a P2X7 agonist, induced cell death at concentrations that are described to activate the P2X7 receptor in mouse. oATP, an antagonist of P2X7, blocked the ATP‐induced cell death. Agonists of purinergic receptors expressed in GL261 such as adenosine, ADP, UTP did not cause any cell death, even at mM concentrations. A sub‐population of cells more sensitive to ATP expressed more P2X7 when compared to a less sensitive subpopulation. Accordingly, RNA interference of the P2X7 receptor drastically reduced ATP‐induced cell death, suggesting that this receptor is necessary for this effect. The mechanism of ATP‐induced cell death is predominantly necrotic, since cells presented shrinkage accompanied by membrane permeabilization, but not apoptotic, since no phosphatidylserine externalization or caspase activity was observed. These data show the importance of P2X7 in ATP‐induced cell death and shed light on the importance of ATP‐induced cell death in glioma development. J. Cell. Biochem. 109: 983–991, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
15.
UV-B辐射对植物的影响体现在多个水平, 其会引起植物DNA损伤, 造成有丝分裂异常, 最终影响植物的生长发育及生理生化过程。RAD21.3是黏连蛋白复合物的一个亚基, 参与有丝分裂中染色体的分离。该研究以哥伦比亚生态型拟南芥(Arabidopsis thaliana)和atrad21.3突变体为材料, 设置对照(CK)及UV-B处理组, 对野生型(WT)、atrad21.3及过表达株系的根长、株高、抽薹时间和生理生化指标进行统计分析。利用碱性品红染色观察拟南芥根尖的有丝分裂现象, 并统计畸变率。SPSS分析结果表明, UV-B处理后, WT UV-B和atrad21.3 CK的抽薹时间、株高及各项生理生化指标与WT CK相比无显著差异, 但atrad21.3 UV-B与之相比差异显著。通过烟草(Nicotiana benthamiana)的瞬时表达和亚细胞定位观察, 发现RAD21.3集中在细胞核; 进一步观察分裂期细胞发现落后染色体、染色体桥和游离染色体等异常现象。统计结果表明, 与WT CK相比, WT UV-B和atrad21.3 CK的畸变率较高, 但atrad21.3 UV-B的畸变率更高, 表明RAD21.3可能响应UV-B辐射诱导的异常有丝分裂。 相似文献
16.
Averey D. Strong M. Caitlin Indart Nolan R. Hill Richard L. Daniels 《Molecular and cellular biochemistry》2018,439(1-2):53-63
Necrotizing enterocolitis (NEC) is one of the most severe and unpredictable complications of prematurity. There are two possible mechanisms involved in the pathogenesis of NEC: individual inflammatory response and impaired blood flow in mesenteric vessels with secondary ischemia of the intestine. The aim of this study was to evaluate the possible relationship between polymorphisms: Il-1β 3953C>T, Il-6 ?174G>C and ?596G>A, TNFα ?308G>A, and 86 bp variable number tandem repeat polymorphism of interleukin-1 receptor antagonist (Il-1RN VNTR 86 bp) and three polymorphisms that may participate in arteries tension regulation and in consequence in intestine blood flow impairment: eNOS (894G>T and ?786T>C) and END-1 (5665G>T) and NEC in 100 infants born from singleton pregnancy, before 32 + 0 weeks of gestation, exposed to antenatal steroids therapy, and without congenital abnormalities. In study population, 22 (22%) newborns developed NEC. Surgery-requiring NEC was present in 7 children. Statistical analysis showed 20-fold higher prevalence of NEC in infants with the genotype TT [OR 20 (3.71–208.7); p = 0.0004] of eNOS 894G>T gene polymorphism. There was a higher prevalence of allele C carriers of eNOS 786T>C in patients with surgery-requiring NEC [OR 4.881 (1.33–21.99); p = 0.013]. Our investigation did not confirm any significant prevalence for NEC development in another studied genotypes/alleles. This study confirms the significant role of polymorphisms that play role in intestine blood flow. Identifying gene variants that increase the risk for NEC development may be useful in screening infants with inherent vulnerability and creating strategies for individualized care. 相似文献
17.
Fang Yuan Dana E. Tabor Richard K. Nelson Hongjiang Yuan Yijia Zhang Jenny Nuxoll Kimberly K. Bynoté Subodh M. Lele Dong Wang Karen A. Gould 《PloS one》2013,8(11)
We evaluated the ability of a macromolecular prodrug of dexamethasone (P-Dex) to treat lupus nephritis in (NZB × NZW)F1 mice. We also explored the mechanism underlying the anti-inflammatory effects of this prodrug. P-Dex eliminated albuminuria in most (NZB × NZW)F1 mice. Furthermore, P-Dex reduced the incidence of severe nephritis and extended lifespan in these mice. P-Dex treatment also prevented the development of lupus-associated hypertension and vasculitis. Although P-Dex did not reduce serum levels of anti-dsDNA antibodies or glomerular immune complexes, P-Dex reduced macrophage recruitment to the kidney and attenuated tubulointerstitial injury. In contrast to what was observed with free dexamethasone, P-Dex did not induce any deterioration of bone quality. However, P-Dex did lead to reduced peripheral white blood cell counts and adrenal gland atrophy. These results suggest that P-Dex is more effective and less toxic than free dexamethasone for the treatment of lupus nephritis in (NZB × NZW)F1 mice. Furthermore, the data suggest that P-Dex may treat nephritis by attenuating the renal inflammatory response to immune complexes, leading to decreased immune cell infiltration and diminished renal inflammation and injury. 相似文献
18.
Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins. 相似文献
19.
20.
Antonio Fernandez Nikki Horn Udo Wegmann Claudio Nicoletti Michael J. Gasson Arjan Narbad 《Applied microbiology》2009,75(3):869-871
The novel signal peptide SLPmod was used for the secretion of murine interleukin-12 (mIL-12) by Lactococcus lactis. A >4-fold increase in secretion was observed when SLPmod was used instead of the Usp45-derived secretion signal. Oral delivery of this cytokine using the autoinducible host L. lactis FI5876 utilizing SLPmod resulted in a significant increase in mIL-12 plasma levels in mice. 相似文献