首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tsai KW  Liao YL  Wu CW  Hu LY  Li SC  Chan WC  Ho MR  Lai CH  Kao HW  Fang WL  Huang KH  Lin WC 《Epigenetics》2011,6(10):1189-1197
Carcinogenesis of the stomach involves multiple steps including genetic mutation or epigenetic alteration of tumor suppressor genes or oncogenes. Recently, tumor suppressive miRNAs have been shown to be deregulated by aberrant hypermethylation during gastric cancer progression. In this study, we demonstrate that three independent genetic loci encoding for miR-9 (miR-9-1, miR-9-2 and miR-9-3) are simultaneously modified by DNA methylation in gastric cancer cells. Methylation-mediated silencing of these three miR-9 genes can be reactivated in gastric cancer cells through 5-Aza-dC treatment. Subsequent analysis of the expression levels of miR-9 showed that it was significantly down-regulated in gastric cancers compared with adjacent normal tissues (P value < 0.005). A similar tendency toward a tumor-specific DNA methylation pattern was shown for miR-9-1, miR-9-2 and miR-9-3 in 72 primary human gastric cancer specimens. Ectopic expression of miR-9 inhibited cell proliferation, migration and invasion, suggesting its tumor suppressive potential in gastric cancer progression.  相似文献   

2.
MicroRNA regulates gene expression, is involved in many cellular processes, and plays an important role in the development of cancer. The regulation of the expression of miRNA genes can be achieved by methylating their CpG islands, which is shown in different types of tumors. The methylation of miRNA genes in clear cell renal cell carcinoma (CCRCC) has mainly been studied for the miR-9 and miR-34 families. The methylation of six miRNA genes (miR-124a-2, -124a-3, -9-1, -9-3, -34b/c, -129-2) was analyzed with using a representative sample (46 cases). Methylation of three genes miR -124a-2, -124a-3, and -129-2 was studied in kidney tumors for the first time. Methylation analysis was performed using methyl specific PCR. It is shown that the frequency of methylation of six genes was changed from 37% to 65% in tumor samples and significantly higher in tumor samples than in samples of histologically normal tissue (P ≤ 3 × 10?5 by Fisher’s exact test). These results suggest the properties of tumor suppressors for the six miRNA genes indicated in CCRCC. We also found correlations between the methylation frequency of some miRNA genes and signs of the progression of CCRCC (tumor size, clinical stage, loss of differentiation, and metastasis).  相似文献   

3.
The involvement of epigenetic alterations in the pathogenesis of melanoma is increasingly recognized. Here, we performed genome‐wide DNA methylation analysis of primary cutaneous melanoma and benign melanocytic nevus interrogating 14 495 genes using BeadChip technology. This genome‐wide view of promoter methylation in primary cutaneous melanoma revealed an array of recurrent DNA methylation alterations with potential diagnostic applications. Among 106 frequently hypermethylated genes, there were many novel methylation targets and tumor suppressor genes. Highly recurrent methylation of the HOXA9, MAPK13, CDH11, PLEKHG6, PPP1R3C, and CLDN11 genes was established. Promoter methylation of MAPK13, encoding p38δ, was present in 67% of primary and 85% of metastatic melanomas. Restoration of MAPK13 expression in melanoma cells exhibiting epigenetic silencing of this gene reduced proliferation, indicative of tumor suppressive functions. This study demonstrates that DNA methylation alterations are widespread in melanoma and suggests that epigenetic silencing of MAPK13 contributes to melanoma progression.  相似文献   

4.
《Epigenetics》2013,8(11):1230-1237
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

5.
6.
7.
Epigenetic reprogramming by embryonic stem cell-specific miR-302/367 cluster has shown some tumor suppressive effects in cancer cells of different tissues such as skin, colon, and cervix. Vitamin C has been known as a reprogramming enhancer of human and mouse somatic cells. In this study, first we aimed to investigate whether exogenous induction of miR-302/367 in breast cancer cells shows the same tumor suppressive effects previously observed in other cancer cells lines, and whether vitamin C can enhance reprogramming of breast cancer cells and also improve the tumor suppressive function of miR-302/367 cluster. Overexpression of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 breast cancer cells upregulated expression of miR-302/367 members and also some core pluripotency factors including OCT4A, SOX2 and NANOG, induced mesenchymal to epithelial transition, suppressed invasion, proliferation, and induced apoptosis in the both cell lines. However, treatment of the miR-302/367 transfected cells with vitamin C suppressed the expression of pluripotency factors and augmented the tumorigenicity of the breast cancer cells by restoring their proliferative and invasive capacity and compromising the apoptotic effect of miR-302/367. Supplementing the culture medium with vitamin C downregulated expression of TET1 gene which seems to be the reason behind the negative impact of vitamin C on the reprogramming efficiency of miR-302/367 cluster and its anti-tumor effects. Therefore application of vitamin C may not always serve as a reprogramming enhancer depending on its switching function on TET1. This phenomenon should be carefully considered when considering a reprogramming strategy for tumor suppression.  相似文献   

8.
An increasing body of evidence supports a stepwise model for progression of breast cancer from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Due to the high level of DCIS heterogeneity, we cannot currently predict which patients are at highest risk for disease recurrence or progression. The mechanisms of progression are still largely unknown, however cancer stem cell populations in DCIS lesions may serve as malignant precursor cells intimately involved in progression. While genetic and epigenetic alterations found in DCIS are often shared by IDC, mRNA and miRNA expression profiles are significantly altered. Therapeutic targeting of cancer stem cell pathways and differentially expressed miRNA could have significant clinical benefit. As tumor grade increases, miRNA-140 is progressively downregulated. miR-140 plays an important tumor suppressive role in the Wnt, SOX2 and SOX9 stem cell regulator pathways. Downregulation of miR-140 removes inhibition of these pathways, leading to higher cancer stem cell populations and breast cancer progression. miR-140 downregulation is mediated through both an estrogen response element in the miR-140 promoter region and differential methylation of CpG islands. These mechanisms are novel targets for epigenetic therapy to activate tumor suppressor signaling via miR-140. Additionally, we briefly explored the emerging role of exosomes in mediating intercellular miR-140 signaling. The purpose of this review is to examine the cancer stem cell signaling pathways involved in breast cancer progression, and the role of dysregulation of miR-140 in regulating DCIS to IDC transition.  相似文献   

9.
10.
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.  相似文献   

11.
12.
To date, there are more than 2000 known human miRNAs, each of which may be involved in the regulation of hundreds of protein-coding target genes. In turn, the methylation of CpG islands affects the miRNA gene expression. Our aim was to evaluate the role of methylation in the regulation of miRNA gene expression and, consequently, in the regulation of the expression of target genes in primary lung tumors. Using a common collection of samples of non-small-cell lung cancer, we have performed a comprehensive study, including an analysis of the methylation status and level of expression of some miRNA genes and their potential target genes on chromosome 3, i.e., RAR-beta2 and NKIRAS1. The increased frequency of methylation in lung tumors compared to histologically normal tissue was revealed for miR-9-1 and miR-34b/c genes with significant statistics (P < 0.05 by Fisher’s exact test) and for miR-9-3 and miR-193a was marginally significant (P < 0.1). A significant correlation was revealed between the changes in methylation and level of expression of miR-9-1 gene (P ≈ 5 × 10−12 by Spearman) in lung tumors, which suggests the role of methylation in the regulation of expression of these miRNA genes. Furthermore, a statistically significant negative correlation (P ≈ 3 × 10−12 to 5 × 10−13 by Spearman) was found between changes in the levels of expression of miR-9-1 and miR-17 and RAR-beta2 target genes, as well as between the changes in the level of expression of miR-17 and NKIRAS1 that were not previously analyzed. The inverse relationship between the levels of expression of miRNA genes and their target genes is consistent with the known mechanism of the suppression of the expression of protein-coding genes under the action of miRNA. For the first time, significant correlations (P ≈ 3 × 10−10 to 4 × 10−13 by Spearman) were shown between changes in the methylation status of miRNA genes (miR-9-1, miR-9-3, miR-34b/c, miR-193a) and the level of expression of the RAR-beta2 target gene and changes in the methylation status of miR-34b/c, and miR-193a and the level of expression of the NKIRAS1 target gene in the primary lung tumors, which suggests the possibility of indirect effects of the methylation of miRNA genes on the level of expression of target genes.  相似文献   

13.
Cholangiocarcinoma (CC) is a rare malignancy of the extrahepatic or intrahepatic biliary tract with an outstanding poor prognosis. Non-surgical therapeutic regimens result in minimally improved survival of CC patients. Global genomic analyses identified a few recurrently mutated genes, some of them in genes involved in epigenetic patterning. In a previous study, we demonstrated global DNA methylation changes in CC, indicating major contribution of epigenetic alterations to cholangiocarcinogenesis. Here, we aimed at the identification and characterization of CC-related, differentially methylated regions (DMRs) in potential microRNA promoters and of genes targeted by identified microRNAs. Twenty-seven hypermethylated and 13 hypomethylated potential promoter regions of microRNAs, known to be associated with cancer-related pathways like Wnt, ErbB, and PI3K-Akt signaling, were identified. Selected DMRs were confirmed in 2 independent patient cohorts. Inverse correlation between promoter methylation and expression suggested miR-129-2 and members of the miR-200 family (miR-200a, miR-200b, and miR-429) as novel tumor suppressors and oncomiRs, respectively, in CC. Tumor suppressor genes deleted in liver cancer 1 (DLC1), F-box/WD-repeat-containing protein 7 (FBXW7), and cadherin-6 (CDH6) were identified as presumed targets in CC. Tissue microarrays of a representative and well-characterized cohort of biliary tract cancers (n=212) displayed stepwise downregulation of CDH6 and association with poor patient outcome. Ectopic expression of CDH6 on the other hand, delayed growth in the CC cell lines EGI-1 and TFK-1, together suggesting a tumor suppressive function of CDH6. Our work represents a valuable repository for the study of epigenetically altered miRNAs in cholangiocarcinogenesis and novel putative, CC-related tumor suppressive miRNAs and oncomiRs.  相似文献   

14.
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2′-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.  相似文献   

15.
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

16.
Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent pediatric cancer. DNA methylation and changes in the microRNAs (miRNAs) expression are known to be important causes of B-ALL. Decitabine as a DNA methyltransferase inhibitor agent is able to induce hypomethylation in several tumor suppressor genes. Much evidence has proven BTG2, PPP1CA, and PTEN act as tumor suppressor genes in many malignancies. In this case control study, the messenger RNA (mRNA) expression of PPP1CA, BTG2, and PTEN genes using quantitative real-time polymerase chain reaction (rRT-PCR) in Nalm6 cell line and five patients suffer from ALL with mean age 5.6 years were determined in compare with seven normal healthy donors age and sex matched. qRT-PCR analysis revealed that the expression levels of PPP1CA, BTG2, and PTEN genes were significantly decreased in Nalm6 ([FC] = 0.46, [FC] = 0.046, [FC] = 0.54) and according to the Methylation-specific PCR (MSP) analysis, these genes were hypermethylated in Nalm6. In next step, the effects of decitabine treatment on the methylation and expression of these genes in association with changes in miR-125b, miR-17, and miR-181b expression levels were evaluated in optimal concentration 2.5 µM of decitabine. Our data showed that decitabine is able to restore the expression levels of aforementioned genes and downregulate expression levels of oncomiRs; including miR-125b, miR-17, and miR-181b in Nalm6 cell line. Therefore, it seems that decitabine can be used as a potential drug for the first line treatment of patients with B-ALL, but further in vivo investigation is necessary.  相似文献   

17.
The tumor protein (TP) p63/microRNAs functional network may play a key role in supporting the response of squamous cell carcinomas (SCC) to chemotherapy. We show that the cisplatin exposure of SCC-11 cells led to upregulation of miR-297, miR-92b-3p, and miR-485-5p through a phosphorylated ΔNp63α-dependent mechanism that subsequently modulated the expression of the protein targets implicated in DNA methylation (DNMT3A), histone deacetylation (HDAC9), and demethylation (KDM4C). Further studies showed that mimics for miR-297, miR-92b-3p, or miR-485-5p, along with siRNA against and inhibitors of DNMT3A, HDAC9, and KDM4C modulated the expression of DAPK1, SMARCA2, and MDM2 genes assessed by the quantitative PCR, promoter luciferase reporter, and chromatin immunoprecipitation assays. Finally, the above-mentioned treatments affecting epigenetic enzymes also modulated the response of SCC cells to chemotherapeutic drugs, rendering the resistant SCC cells more sensitive to cisplatin exposure, thereby providing the groundwork for novel chemotherapeutic venues in treating patients with SCC.  相似文献   

18.
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA''s 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.  相似文献   

19.

Background & Aims

Gastric cancer is the most frequent gastrointestinal tumor in adults and is the most lethal form of human cancer. Despite of the improvements in treatments, the underlying mechanism of gastric carcinogenesis is not well known. To define novel modulators that regulate susceptibility to tumorgenesis, we focused on miR-219-2-3p.

Methods

Quantitative RT-PCR was employed to investigate the level of miR-219-2-3p in gastric cancer (GC) tissues (n = 113) and their matched adjacent normal tissues (n = 113). In vitro cell proliferation, apoptosis assays, cell migration, and invasion assays were performed to elucidate biological effects of miR-219-2-3p. Since silencing of miRNA by promoter CpG island methylation may be an important mechanism in tumorgenesis, GC cells were treated with 5-aza-2′-deoxycytidine and trichostatin A, and expression changes of miR-219-2-3p were subsequently examined by quantitative RT-PCR. Finally, the methylation status of CpG island upstream of miR-219-2-3p was analyzed by methylation-specific PCR in GC tissues (n = 22).

Results

miR-219-2-3p was down-regulated in GC and cell lines. In addition, the experiments documented the lower expression of miR-219-2-3p in GC specimens with higher grade and later stage tumors. Meanwhile, miR-219-2-3p exerted antiproliferative, proapoptotic, and antimetastatic roles and reduced levels of p-ERK1/2 in GC cells. Furthermore, 5-aza-2′-deoxycytidine and trichostatin A increased the expression (∼2 fold) of miR-219-2-3p in GC cells. By methylation-specific PCR, DNA methylation in the upstream region of miR-219-2-3p was detected in both adjacent normal tissues and cancer tissues. As expected, the methylation level was considerably higher in the miR-219-2-3p down-regulated group than up-regulated group.

Conclusions

miR-219-2-3p is potentially involved in gastric cancer progression and metastasis by regulating ERK1/2-related signal pathways, which may provide a novel therapeutic strategy for treatment of gastric cancer. Methylation mechanism may be involved in modulating the expression level of miR-219-2-3p in gastric cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号