首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone marrow has been proposed as a possible source of cells capable of replacing injured neural cells in diseases such as Multiple Sclerosis (MS). Previous studies have reported conflicting results regarding the transformation of bone marrow cells into neural cells in vivo. This study is a detailed analysis of the fate of bone marrow derived cells (BMDC) in the CNS of C57Bl/6 mice with and without experimental autoimmune encephalomyelitis using flow cytometry to identify GFP-labeled BMDC that lacked the pan-hematopoietic marker CD45 and co-expressed neural markers polysialic acid-neural cell adhesion molecule or A2B5. A small number of BMDC displaying neural markers and lacking CD45 expression was identified within both the non-inflamed and inflamed CNS. However, the majority of BMDC exhibited a hematopoietic phenotype.Key words: bone marrow, transplantation, transdifferentiation, central nervous system, green fluorescence protein, experimental autoimmune encephalomyelitis, multiple sclerosis  相似文献   

2.
In this study, we examined in more detail the development of rat bone marrow-derived dendritic cells (BMDC). A two-stage culture system was used to propagate BMDC from rat bone marrow precursors. BMDC developed within clusters of proliferating cells after repetitive addition of rat granulocyte/macrophage colony-stimulating factor and rat interleukin (IL)-4 at a concentration of 5 ng/ml to the cultures. Fluorescence-activated cell sorter analysis performed at an early stage of development (day 6) revealed an immature phenotype with intermediate levels of major histocompatibility complex (MHC) class II expression and low levels of the costimulator molecules CD80 and CD86. Upon further culture, a strong upregulation of MHC class II, costimulatory and adhesion molecules could be observed, whereas macrophage marker antigens were downregulated. Late-stage BMDC (day 10) showed a high expression of MHC class I and II, ICAM-1, Ox62 and CD11c, and revealed a split pattern of B7-1 and B7-2. The cell yield was about 40% of the initially plated bone marrow cells with 80% MHC class II-high and less than 20% MHC class II-low positive cells. Full maturation of rat BMDC (day 12) with an almost uniform expression of B7 was achieved by subsequent subculture and further stimulation with rat tumour necrosis factor alpha (TNF-alpha), lipopolysaccharide (LPS) or soluble CD40 ligand (CD40L). Analysis of the cell supernatant revealed a strong IL-12 production after LPS or CD40L, and to a lesser extent after TNF-alpha stimulation. Additionally, LPS-treated, but not CD40L-treated BMDC secreted TNF-alpha into the supernatant. Early-stage BMDC sufficiently triggered a T cell receptor (TCR) downregulation, but did not stimulate naive T cells in an allogeneic mixed leukocyte reaction (MLR) and revealed a low stimulatory capacity in an antigen-specific T cell assay. In contrast, late-stage BMDC and especially fully mature BMDC strongly induced TCR internalisation, elicited high T cell responses in the allogeneic MLR similar to those obtained by mature rat spleen dendritic cells and efficiently activated antigen-specific T cells. In conclusion, this protocol allows easy access to large numbers of rat BMDC at defined maturation stages and selective studies for the manipulation of immune responses in rat models.  相似文献   

3.
Dendritic cells are potent activators of the immune system and have a key role in linking innate and adaptive immune responses. In the current study we have used ex vivo pulsed bone marrow dendritic cells (BMDC) in a novel adoptive transfer strategy to protect against challenge with Bacillus anthracis, in a murine model. Pre-pulsing murine BMDC with either recombinant Protective Antigen (PA) or CpG significantly upregulated expression of the activation markers CD40, CD80, CD86 and MHC-II. Passive transfusion of mice with pulsed BMDC, concurrently with active immunisation with rPA in alum, significantly enhanced (p<0.001) PA-specific splenocyte responses seven days post-immunisation. Parallel studies using ex vivo DCs expanded from human peripheral blood and activated under the same conditions as the murine DC, demonstrated that human DCs had a PA dose-related significant increase in the markers CD40, CD80 and CCR7 and that the increases in CD40 and CD80 were maintained when the other activating components, CpG and HK B. anthracis were added to the rPA in culture. Mice vaccinated on a single occasion intra-muscularly with rPA and alum and concurrently transfused intra-dermally with pulsed BMDC, demonstrated 100% survival following lethal B. anthracis challenge and had significantly enhanced (p<0.05) bacterial clearance within 2 days, compared with mice vaccinated with rPA and alum alone.  相似文献   

4.
5.
We report on a subset of cells that co-purify with CD45-positive/Lineage minus (CD45(pos)/Lin(minus)) hematopoietic cells that are capable of in vitro differentiation into multi-potential cells including cells with neuroectoderm properties. Although these cells are CD45 positive and have properties similar to CD45-negative mesenchymal progenitor cells (MPC) derived from bone marrow (BM), they are neither hematopoietic cells nor mesenchymal cells. These CD45(pos)/Lin(minus) cells can be expanded in vitro, express the stem cell genes Oct-4 and Nanog and can be induced to differentiate into endothelial cells, osteoblasts, muscle cells and neural cells at frequencies similar to those reported for bone marrow mesenchymal cells. Long-term culture of these cells followed by transplantation into NOD/SCID mice resulted in positive bone marrow stromal cell engraftment but not hematopoietic engraftment, suggesting that despite their CD45-positive status these cells do not have the same properties as hematopoietic stem cells. Clonal cell analysis determined that the culture period caused a broadening in the differentiation potential of the starting population.  相似文献   

6.
目的:研究表皮生长因子诱导骨髓间充质干细胞向视网膜神经细胞分化的可能性。方法:体外培养骨髓间充质干细胞,利用流式细胞仪分析其细胞表型。采用含EGF的培养液诱导骨髓间充质干细胞向视网膜神经细胞分化,并利用免疫荧光法进行鉴定。结果:从骨髓中分离培养的细胞具有成纤维细胞样形态,贴壁生长,表型相对均一,表面标志为CD90、CD44、CD147阳性;而CD34、CD38、CD45、CD14、HLA-DR阴性。体外诱导后可以得到神经干细胞标志物nestin、神经胶质细胞标志物GFAP和视网膜光感受器细胞标志物Rhodopsin呈阳性表达的细胞。结论:从骨髓中分离培养得到的间充质干细胞具有向视网膜神经细胞分化的潜能。  相似文献   

7.
Lycium barbarum polysaccharides (LBPs) have been known to have a variety of immunomodulatory functions including activation of T cells, B cells and NK cells. Dendritic cells (DC) are potent antigen-presenting cells that play pivotal roles in the initiation of the primary immune response. However, little is known about the immunomodulatory effects of LBPs on murine bone marrow derived dendritic cells (BMDC). In the present study, the effects of LBPs on the phenotypic and functional maturation of murine BMDC were investigated in vitro. Compared to the BMDC that were only subjected to treatment with RPMI1640, the co-expression of I-A/I-E, CD11c and secretion of IL-12 p40 by BMDC stimulated with LBPs (100 microg/ml) were increased. In addition, the endocytosis of FITC-dextran by LBPs-treated BMDC (100 microg/ml) was impaired, whereas the activation of proliferation of allogenic lymphocytes by BMDC was enhanced. Our results strongly suggest that LBPs are capable of promoting both the phenotypic and functional maturation of murine BMDC in vitro.  相似文献   

8.
Human trisomy 21, Down syndrome (DS), is characterized by mental retardation. In addition, high risks of developing hematological and immune disorders, as well as cardiac, skeletal and other abnormalities are life-long concerns. Recent data suggested that bone marrow contains progenitors, hematopoietic or stromal cells, which may have the potential of generating non hematopoietic tissue such as neural cells, cardiac cells or osteoblasts. Therefore we have used a model of Down syndrome, Ts65Dn mice, to investigate their bone marrow. We have found that the vast majority of CD34(+) cells in the bone marrow of adult Ts65Dn mice, but not of the CD34(-) cells, exhibit a drastic reduction in their in vitro growth capacity. In addition to neural antigens, cultured CD34(+) cells from trisomic and diploid mice also expressed mast cell markers.  相似文献   

9.
Mesenchymal stem cells (MSCs) are of great interest for their potential use in cellular therapies. To define the population more precisely, diverse surface markers have been used. We propose here to use CD271 as the sole marker for MSCs in fresh bone marrow. We compared CD271+ populations to the presence or absence of five defined markers for MSCs: CD90+, CD105+, CD45-, CD34- and CD79. The correlations between markers were evaluated and analyzed with a Pearson's correlation test. We found that the average percentage of cells expressing the combination of markers CD90+, CD105+, CD45-, CD34- and CD79- was 0.54%, and that the average percentage average of CD271+ cells was 0.53%. The results were significant (p<0.05). The exclusive use of CD271 as a marker for MSCs from fresh samples of bone marrow appears to be highly selective. Using CD271 as the sole identification marker for MSCs could reduce costs and accelerate the process of identifying MSCs for the field of cellular therapy.  相似文献   

10.
Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.  相似文献   

11.
Murine polymicrobial sepsis is associated with a sustained reduction of dendritic cell (DC) numbers in lymphoid organs and with a dysfunction of DC that is considered to mediate the chronic susceptibility of post-septic mice to secondary infections. We investigated whether polymicrobial sepsis triggered an altered de novo formation and/or differentiation of DC in the bone marrow. BrdU labeling experiments indicated that polymicrobial sepsis did not affect the formation of splenic DC. DC that differentiated from bone marrow (bone marrow-derived DC [BMDC]) of post-septic mice released enhanced levels of IL-10 but did not show an altered phenotype in comparison with BMDC from sham mice. Adoptive transfer experiments of BMDC into naive mice revealed that BMDC from post-septic mice impaired Th1 priming but not Th cell expansion and suppressed the innate immune defense mechanisms against Pseudomonas bacteria in the lung. Accordingly, BMDC from post-septic mice inhibited the release of IFN-γ from NK cells that are critical for the protection against Pseudomonas. Additionally, sepsis was associated with a loss of resident DC in the bone marrow. Depletion of resident DC from bone marrow of sham mice led to the differentiation of BMDC that were impaired in Th1 priming similar to BMDC from post-septic mice. Thus, in response to polymicrobial sepsis, DC precursor cells in the bone marrow developed into regulatory DC that impaired Th1 priming and NK cell activity and mediated immunosuppression. The absence of resident DC in the bone marrow after sepsis might have contributed to the modulation of DC differentiation.  相似文献   

12.
Rheumatoid arthritis (RA) leads to destruction of cartilage and bone. Whether rheumatoid arthritis also affects the adjacent bone marrow is less clear. In this study, we investigated subcortical bone marrow changes in joints from patients with RA. We describe penetration of the cortical barrier by synovial inflammatory tissue, invasion into the bone marrow cavity and formation of mononuclear cell aggregates with B cells as the predominant cell phenotype. B cells expressed common B cell markers, such as CD20, CD45RA, and CD79a, and were mature B cells, as indicated by CD27 expression. Plasma cells were also present and were enriched in the regions between aggregates and inflammatory tissue. Moreover, molecules for B cell chemoattraction, such as BCA-1 and CCL-21, homing, mucosal addressin cell adhesion molecule-1 and survival, BAFF, were expressed. Endosteal bone next to subcortical bone marrow aggregates showed an accumulation of osteoblasts and osteoid deposition. In summary, we show that synovial inflammatory tissue can reach the adjacent bone marrow by fully breaking the cortical barrier, which results in formation of B cell-rich aggregates as well as increased formation of new bone. This suggests that bone marrow is an additional compartment in the disease process of RA.  相似文献   

13.
Populations of human mesenchymal stem cells were derived from bone marrow and adipose tissue. Here analysis of six individuals is represented. Cells were isolated, expanded and evaluated by the expression of surface antigens using flow cytometry. These cells displayed similar characteristics for many markers. Cells isolated from bone marrow and adipose tissue were found to be homogeneously positive for CD13, CD44, CD90, CD105, and negative for CD45, CD34, CD31 and CD117. Besides, differences in surface antigene CD10 expression between narrow and adipose tissue-derived cells were detected. All these findings indicate that both bone marrow and adipose tissue are important sources of mesenchymal stem cells, which could be used in cell therapy protocols.  相似文献   

14.
Bone marrow is an important source of mesenchymal stem cells (MSCs), and a promising tool for cytotherapy. MSC utilization is limited by low cell yields obtained under standard isolation protocols. Herein, used bone marrow collection sets were evaluated as a valuable source of MSCs. Adherent cells washed from the collection sets were examined for widely accepted criteria defining MSCs. Significant numbers of cells (median 9million per set in passage 1) with colony-forming activity and high proliferative potential at low seeding densities were obtained. These cells were positive for essential MSC surface molecules (CD90, CD105, CD166, CD44, CD29) and negative for most haematopoietic and endothelial cell markers (CD45, CD34, CD11a, CD235a, HLA-DR, CD144). The cells were capable of differentiation along adipogenic, osteogenic and chondrogenic pathways. Washing out bone marrow collection sets may constitute a highly ethical source of MSCs for research purposes and may be utilized also in clinical applications.  相似文献   

15.
16.
Adult bone marrow-derived stem cells (BMDC) have been shown to contribute to numerous tissues after transplantation into a new host. However, whether the participation of these cells is part of the normal response to injury remains a matter of debate. Using parabiotically joined pairs of genetically labeled and wildtype mice, we show here that irradiation-induced damage of the target tissue, injection of bone marrow into the circulation, and immunological perturbation that are consequences of bone marrow transplantation are not necessary for bone marrow contribution to myofibers. Moreover, severe toxin-induced damage is not a prerequisite, as BMDC contribution to muscle is enhanced in response to increased muscle activity resulting from muscle overloading or forced exercise. Indeed, these two forms of muscle stress result in much more rapid contribution (within 1 month) than voluntary running (6 months). These results indicate that BMDC contribute to myofibers in response to physiologic stresses encountered by healthy organisms throughout life.  相似文献   

17.
Mesenchymal stem cells (MSC) are able to transdifferentiate into cells with different functional phenotypes and considered as a promising resource for regenerative therapy. MSC derived from different tissues vary in their differentiation potential and in some cases express tissue specific markers indicating a kinship between mesenchymal and parenchymal phenotypes in the same tissue. It is possible that homorganic MSC can be more effectively induced to tissue specific differentiation and preferable for cell therapy of this organ as compared with bone marrow derived cells being commonly used for this purpose. Using bladder tissue explants, we prepared primary MSC cultures from the fetal (MSC-BF) and adult syngenic BALB/c mice and characterized their abilities during long-term passaging. In contrast to the cells from adult mice, the MSC-BF cells have the ability for a sustained growth in vitro, clonogenicity and differentiation into adipose and bone cells. Similar to the bone marrow MSC, MSC-BF express the mesenchymal markers CD29, CD44, CD49f, CD90, CD105 but not the leukocyte common antigen CD45. In normal conditions, MSC-BF produce such urothelial markers as CK14 and FOXA1 although their expression level is by far lower than in the bladder tissue. The hypomethylating agent, 5-azacytidine, induces in MSC-BF the expression of the urothelial differentiation activator PPARγ and the functional urothelium markers UP1a, UP1b, UP3a, UP3b. The data obtained suggest that MSC-BF can be epigenetically reprogrammed into urothelium by the 5-azacytidine treatment, and this may offer the novel strategy for cell therapy of bladder diseases.  相似文献   

18.
Mesenchymal stem cells (MSCs) have been isolated based on the ability of adherence to plastic surfaces. The potential of these cells to differentiate along multiple lineages is the key to identifying stem cell populations in the absence of molecular markers. Here we describe a homogenous population of MSCs from mouse bone marrow isolated using a relatively straightforward and novel approach. This method is based on the combination of frequent medium change (FMC) and treatment of the primary cultures with trypsin. Cells isolated using this method demonstrated the MSCs characteristics including their ability to differentiate into mesenchymal lineages. MSCs retained the differentiation potentials in expanded cultures up to 10 passages. Isolated MSCs were reactive to the CD44, Sca-1, and CD90 cell surface markers. MSCs were negative for the hematopoietic surface markers such as CD34, CD11b, CD45, CD31, CD106, CD117 and CD135. The data presented in this report indicated that this method can result in efficient isolation of homogenous populations of MSCs from mouse bone marrow.  相似文献   

19.
Omentum fat derived stem cells have emerged as an alternative and accessible therapeutic tool in recent years in contrast to the existing persuasive sources of stem cells, bone marrow and subcutaneous adipose tissue. However, there has been a scanty citation on human omentum fat derived stem cells. Furthermore, identification of specific cell surface markers among aforesaid sources is still controversial. In lieu of this existing perplexity, the current research work aims at signifying omentum fat as a ground-breaking source of stem cells by surface antigenic profiling of stem cell population. In this study, we examined and compared the profiling of cell surface antigenic expressions of hematopoietic stem cells, mesenchymal stem cells, cell adhesion molecules and other unique markers such as ABCG2, ALDH and CD 117 in whole cell population of human omentum fat, subcutaneous fat and bone marrow. The phenotypic characterization through flowcytometry revealed the positive expressions of CD 34, CD 45, CD 133, HLADR, CD 90, CD 105, CD 73, CD 29, CD 13, CD 44, CD 54, CD 31, ALDH and CD 117 in all sources. The similarities between the phenotypic expressions of omentum fat derived stem cells to that of subcutaneous fat and bone marrow substantiates that identification of ultimate source for curative therapeutics is arduous to assess. Nevertheless, these results support the potential therapeutic application of omentum fat derived stem cells.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-012-9427-4) contains supplementary material, which is available to authorized users.  相似文献   

20.
A study of the regenerative potential of bone marrow cells of donor mice that express the enhanced green fluorescent protein was conducted in mice irradiated at a dose of 7 Gy. Expression of this protein allowed us to carry out monitoring of the presence of donor cells in recipient blood over the entire lifespan of the recipient. The lifespan of young recipients increased by 93% after transplantation; for old recipients it increased by 15%. Total acceptance of the bone marrow, spleen, thymus, and blood of the recipient with donor bone marrow cells was demonstrated over the entire life of the recipient. Only the donor colonies were detected with the studied irradiation dose and number of transplanted cells (11.7 ± 0.4) · 106 on the spleen surface. The percentage of bone marrow and spleen cells that expressed the CD117 and CD34 stem cell markers in the recipient mice was above the control level for a long period of time after the irradiation. More than half of the cells with CD117, CD34, CD90.2, and CD45R/B220 phenotypes in the studied organs were donor cells. Further detailed study of the peculiarities of the engraftment of bone marrow cells, both without preliminary treatment of recipients and after the effects of extreme factors, will allow improvement of the methods of cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号