首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein complex, is a mediator of telomere associations in mammalian cells. Using live-cell imaging, we show that expression of TRF1 or yellow fluorescent protein (YFP)-TRF1 fusion protein above endogenous levels prevents proper telomere resolution during mitosis. TRF1 overexpression results in telomere anaphase bridges and aggregates containing TRF1 protein and telomeric DNA. Site-specific protein cleavage of YFP-TRF1 by tobacco etch virus protease resolves telomere aggregates, indicating that telomere associations are mediated by TRF1. This study provides novel insight into the formation and resolution of telomere associations.  相似文献   

2.
The mitotic spindle of the budding yeast Saccharomyces cerevisiae will probably be the first such organelle to be understood in molecular detail. Here we describe the mitotic spindle cycle of budding yeast using electron-microscope-derived structures and dynamic live-cell imaging. Recent work has revealed that many general aspects of mitosis are conserved, making budding yeast an excellent model for the study of mitosis.  相似文献   

3.
NPM (nucleophosmin; also known as B23) is an abundantly and ubiquitously expressed multifunctional nucleolar phosphoprotein, which is involved in numerous cellular processes, including ribosome biogenesis, protein chaperoning and centrosome duplication; however, the role of NPM in the cell cycle still remains unknown. In the present study, we show dynamic localization of NPM throughout the cell cycle of HeLa cells. Using a combination of RNAi (RNA interference) and three-dimensional microscopy we show that NPM is localized at the chromosome periphery during mitosis. We also demonstrate that depletion of NPM causes distortion of nucleolar structure as expected and leads to unexpected dramatic changes in nuclear morphology with multiple micronuclei formation. The defect in nuclear shape of NPM-depleted cells, which is clearly observed by live-cell imaging, is due to the distortion of cytoskeletal (alpha-tubulin and beta-actin) structure, resulting from the defects in centrosomal microtubule nucleation. These results indicate that NPM is an essential protein not only for the formation of normal nucleolar structure, but also for the maintenance of regular nuclear shape in HeLa cells.  相似文献   

4.

Background

Live-cell fluorescence microscopy (LCFM) is a powerful tool used to investigate cellular dynamics in real time. However, the capacity to simultaneously measure DNA content in cells being tracked over time remains challenged by dye-associated toxicities. The ability to measure DNA content in single cells by means of LCFM would allow cellular stage and ploidy to be coupled with a variety of imaging directed analyses. Here we describe a widely applicable nontoxic approach for measuring DNA content in live cells by fluorescence microscopy. This method relies on introducing a live-cell membrane-permeant DNA fluorophore, such as Hoechst 33342, into the culture medium of cells at the end of any live-cell imaging experiment and measuring each cell’s integrated nuclear fluorescence to quantify DNA content. Importantly, our method overcomes the toxicity and induction of DNA damage typically caused by live-cell dyes through strategic timing of adding the dye to the cultures; allowing unperturbed cells to be imaged for any interval of time before quantifying their DNA content. We assess the performance of our method empirically and discuss adaptations that can be implemented using this technique.

Results

Presented in conjunction with cells expressing a histone 2B-GFP fusion protein (H2B-GFP), we demonstrated how this method enabled chromosomal segregation errors to be tracked in cells as they progressed through cellular division that were later identified as either diploid or polyploid. We also describe and provide an automated Matlab-derived algorithm that measures the integrated nuclear fluorescence in each cell and subsequently plots these measurements into a cell cycle histogram for each frame imaged. The algorithm’s accurate assessment of DNA content was validated by parallel flow cytometric studies.

Conclusions

This method allows the examination of single-cell dynamics to be correlated with cellular stage and ploidy in a high-throughput fashion. The approach is suitable for any standard epifluorescence microscope equipped with a stable illumination source and either a stage-top incubator or an enclosed live-cell incubation chamber. Collectively, we anticipate that this method will allow high-resolution microscopic analysis of cellular processes involving cell cycle progression, such as checkpoint activation, DNA replication, and cellular division.
  相似文献   

5.
C Fauth  D Zink 《Cytometry》2001,45(3):214-224
BACKGROUND: Single chromosomes and genome compartments in nuclei of living mammalian cells can be analyzed microscopically after specific labeling with fluorescent dyes. This is achieved by incorporating fluorescent nucleotides into the chromosomal DNA during replication (Zink et al.: Hum Genet 102:241-251, 1998; Manders et al.: J Cell Biol 144:813-821, 1999; Sadoni et al.: J Cell Biol 146:1211-1226, 1999). We characterized the potential artificial impact of this approach on chromosome structure and dynamics. We also evaluated potential sources of artifacts in corresponding live-cell imaging. MATERIALS AND METHODS: The subchromosomal distribution of labeled DNA was analyzed, and the fate of labeled nucleotides within cell nuclei was studied. Cell-cycle parameters were used to analyze cell function after incorporation of fluorescent nucleotides. The influences of phototoxic effects on cell division and morphology were studied. RESULTS: Fluorescent nucleotides were only incorporated for a restricted time period during S-phase, and a uniform labeling of chromosomal DNA could not be achieved. Fluorescent nucleotides incorporated into the DNA showed no or only mild effects on cell growth. Cell-cycle parameters and cellular morphology were valuable indicators for proper cell function during live-cell imaging. CONCLUSIONS: There is no indication for a substantial impairment of cellular functions if fluorochromes are covalently linked to chromosomal DNA. The controls we present for proper cell function during the imaging period are of general importance, as appropriate controls for live cell microscopy have not yet been well-defined.  相似文献   

6.
This technical focus article discusses the importance of concentration, cellular exposure and specificity for the application of organelle selective fluorescent dyes in fungi using DNA, membrane and cell wall stains as examples. Nonetheless, the presented considerations are generally applicable to all fluorescent dyes applied to living cells.The association of a fluorescent dye with its target molecule generally impairs molecule and consequently organelle function. Effective dye concentration, cellular exposure time and specificity to the target molecule are key factors that influence the biocompatibility of any fluorescent dye. Prominent molecules frequently used as fluorescent staining targets in fungal cell biology are: (i) DNA for nuclear labelling, (ii) α-/β-glucans and chitin for cell wall labelling, and (iii) phospholipids for plasma membrane and endomembrane labelling. In combination with live-cell imaging settings that reduce light stress, i.e. excitation intensities and exposure times set to the minimum that still achieves good signal-to-noise ratios, is the low dosage application of fluorescent markers as so called “vital dyes” essential for visualising cellular processes in an artefact-free fashion.  相似文献   

7.
8.
Clathrin-mediated endocytosis (CME) is essential for maintaining many basic cellular processes. We monitored the dynamics of clathrin in live Drosophila melanogaster hemocytes overexpressing clathrin light chain fused to enhanced green fluorescent protein (EGFP) using evanescent wave microscopy. Membrane-associated clathrin-coated structures (CCS) constitutively appeared at the peripheral filopodial membrane, moved centripetally while growing in intensity, before being eventually endocytosed within a few tens of seconds. This directed CCS traffic was independent of microtubules but could be blocked by latrunculin A. Taking advantage of available mutants of Drosophila, we expressed clathrin-EGFP in wasp and shibire mutant backgrounds to study the role of actin and dynamin in CCS dynamics and CME in hemocytes. We show that actin plays an essential role in CME in these cells, and that actin and dynamin act at the same stage, but independent of each other. Drosophila melanogaster hemocytes proved to be a promising model system to uncover the molecular events during CME in combining live-cell imaging and genetic analysis.  相似文献   

9.
Imaging molecular interactions in living cells   总被引:3,自引:0,他引:3  
Hormones integrate the activities of their target cells through receptor-modulated cascades of protein interactions that ultimately lead to changes in cellular function. Understanding how the cell assembles these signaling protein complexes is critically important to unraveling disease processes, and to the design of therapeutic strategies. Recent advances in live-cell imaging technologies, combined with the use of genetically encoded fluorescent proteins, now allow the assembly of these signaling protein complexes to be tracked within the organized microenvironment of the living cell. Here, we review some of the recent developments in the application of imaging techniques to measure the dynamic behavior, colocalization, and spatial relationships between proteins in living cells. Where possible, we discuss the application of these different approaches in the context of hormone regulation of nuclear receptor localization, mobility, and interactions in different subcellular compartments. We discuss measurements that define the spatial relationships and dynamics between proteins in living cells including fluorescence colocalization, fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy. These live-cell imaging tools provide an important complement to biochemical and structural biology studies, extending the analysis of protein-protein interactions, protein conformational changes, and the behavior of signaling molecules to their natural environment within the intact cell.  相似文献   

10.
11.
Checkpoint kinase 1 (Chk1) is an evolutionarily conserved serine/threonine kinase that plays an important role in G2/M checkpoint signaling. Here, we evaluate the radiosensitizing effects of a novel selective Chk1 inhibitor MK-8776, comparing its efficacy with a first-generation Chk1 inhibitor UCN-01, and attempt to elucidate the mechanism of radiosensitization. In a clonogenic survival assay, MK-8776 demonstrated a more pronounced radiosensitizing effect than UCN-01, with lower cytotoxicity. Importantly, radiosensitization by MK-8776 can be achieved at doses as low as 2.5 Gy, which is a clinically applicable irradiation dose. MK-8776, but not UCN-01, exacerbated mitotic catastrophe (MC) and centrosome abnormalities, without affecting repair kinetics of DNA double strand breaks. Furthermore, live-cell imaging revealed that MK-8776 significantly abrogated the radiation-induced G2/M checkpoint, prolonged the mitotic phase, and enhanced aberrant mitosis. This suggests that Chk1 inhibition by MK-8776 activates a spindle assembly checkpoint and increases mitotic defects in irradiated EMT6 cells. In conclusion, we have shown that, at minimally toxic concentrations, MK-8776 enhances radiation-induced cell death through the enhancement of aberrant mitosis and MC, without affecting DNA damage repair.  相似文献   

12.
DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible.  相似文献   

13.
Podosomes are mechanosensitive attachment/invasion structures that form on the matrix-adhesion interface of cells and protrude into the extracellular matrix to probe and remodel. Despite their central role in many cellular processes, their exact molecular structure and function remain only partially understood. We review recent progress in molecular scale imaging of podosome architecture, including our newly developed localisation microscopy technique termed HAWK which enables artefact-free live-cell super-resolution microscopy of podosome ring proteins, and report new results on combining fluorescence localisation microscopy (STORM/PALM) and atomic force microscopy (AFM) on one setup, where localisation microscopy provides the location and dynamics of fluorescently labelled podosome components, while the spatial variation of stiffness is mapped with AFM. For two-colour localisation microscopy we combine iFluor-647, which has previously been shown to eliminate the need to change buffer between imaging modes, with the photoswitchable protein mEOS3.2, which also enables live cell imaging.  相似文献   

14.
Plants respond rapidly and precisely to a broad spectrum of developmental, biotic and abiotic cues. In many instances, signaling cascades involved in transducing this information result in changes to the cellular architecture and cytoskeletal rearrangements. Based originally on paradigms for animal cell signaling, phospholipids have received increased scrutiny as key intermediates for transmitting information to the actin cytoskeleton. Significantly, a wealth of biochemical data for plant actin-binding proteins (ABPs) demonstrates that many of these interact with phosphoinositide lipids in vitro. Moreover, phosphatidic acid (PA) has been identified not only as an abundant structural lipid in plants, but also as an intermediary in developmental and stress signaling pathways that lead to altered actin organization. Several years ago, the heterodimeric capping protein (CP) from Arabidopsis was demonstrated to bind PA and is negatively regulated by this lipid in vitro. Whether this form of regulation occurs in cells, however, remained a mystery. A new study, that combines live-cell imaging of cytoskeletal dynamics with reverse-genetic analyses in Arabidopsis, provides compelling new evidence that CP is inhibited from binding filament ends in the presence of PA in vivo. This allows rapid actin polymerization and increases in filament abundance following stimulation and could be one key factor in the physiological responses of plant cells to environmental stimuli.  相似文献   

15.
We use the temporal asymmetry of the cross-correlation function to determine the temporal ordering of spatially localized cellular events in live-cell multichannel fluorescence imaging. The analysis is well suited to noisy, stochastic systems where the temporal order may not be apparent in the raw data. The approach is applicable to any biochemical reaction not in chemical equilibrium, including protein complex assembly, sequential enzymatic processes, gene regulation, and other cellular signaling events. As an automated quantitative measure, this approach allows the data to be readily interpreted statistically with minimal subjective biases. We first test the technique using simulations of simple biophysical models with a definite temporal ordering. We then demonstrate the approach by extracting the temporal ordering of three proteins—actin, sorting nexin 9, and clathrin—in the endocytic pathway.  相似文献   

16.
Computational imaging in cell biology   总被引:1,自引:0,他引:1  
Microscopy of cells has changed dramatically since its early days in the mid-seventeenth century. Image analysis has concurrently evolved from measurements of hand drawings and still photographs to computational methods that (semi-) automatically quantify objects, distances, concentrations, and velocities of cells and subcellular structures. Today's imaging technologies generate a wealth of data that requires visualization and multi-dimensional and quantitative image analysis as prerequisites to turning qualitative data into quantitative values. Such quantitative data provide the basis for mathematical modeling of protein kinetics and biochemical signaling networks that, in turn, open the way toward a quantitative view of cell biology. Here, we will review technologies for analyzing and reconstructing dynamic structures and processes in the living cell. We will present live-cell studies that would have been impossible without computational imaging. These applications illustrate the potential of computational imaging to enhance our knowledge of the dynamics of cellular structures and processes.  相似文献   

17.
Hood  Simon  Mitchell  Jane L  Sethi  Meera  Almond  Neil M  Cutler  Keith L  Rose  Nicola J 《Virology journal》2013,10(1):1-12
Bluetongue virus (BTV) is an arbovirus that is responsible for ‘bluetongue’, an economically important disease of livestock. Although BTV is well characterised at the protein level, less is known regarding its interaction with host cells. During studies of virus inclusion body formation we observed what appeared to be a large proportion of cells in mitosis. Although the modulation of the cell cycle is well established for many viruses, this was a novel observation for BTV. We therefore undertook a study to reveal in more depth the impact of BTV upon cell division. We used a confocal microscopy approach to investigate the localisation of BTV proteins in a cellular context with their respective position relative to cellular proteins. In addition, to quantitatively assess the frequency of aberrant mitosis induction by the viral non-structural protein (NS) 2 we utilised live cell imaging to monitor HeLa-mCherry tubulin cells transfected with a plasmid expressing NS2. Our data showed that these ‘aberrant mitoses’ can be induced in multiple cell types and by different strains of BTV. Further study confirmed multiplication of the centrosomes, each resulting in a separate mitotic spindle during mitosis. Interestingly, the BTV NS1 protein was strongly localised to the centrosomal regions. In a separate, yet related observation, the BTV NS2 protein was co-localised with the condensed chromosomes to a region suggestive of the kinetochore. Live cell imaging revealed that expression of an EGFP-NS2 fusion protein in HeLa-mCherry tubulin cells also results in mitotic defects. We hypothesise that NS2 is a microtubule cargo protein that may inadvertently disrupt the interaction of microtubule tips with the kinetochores during mitosis. Furthermore, the BTV NS1 protein was distinctly localised to a region encompassing the centrosome and may therefore be, at least in part, responsible for the disruption of the centrosome as observed in BTV infected mammalian cells.  相似文献   

18.
We demonstrate live-cell super-resolution imaging using photoactivated localization microscopy (PALM). The use of photon-tolerant cell lines in combination with the high resolution and molecular sensitivity of PALM permitted us to investigate the nanoscale dynamics within individual adhesion complexes (ACs) in living cells under physiological conditions for as long as 25 min, with half of the time spent collecting the PALM images at spatial resolutions down to approximately 60 nm and frame rates as short as 25 s. We visualized the formation of ACs and measured the fractional gain and loss of individual paxillin molecules as each AC evolved. By allowing observation of a wide variety of nanoscale dynamics, live-cell PALM provides insights into molecular assembly during the initiation, maturation and dissolution of cellular processes.  相似文献   

19.
Mutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region. We identified novel APC interactions with the mitochondrial kinesin-motor complex Miro/Milton that were mediated by the APC C-terminus. Truncating mutations in APC abolished its ability to bind Miro/Milton and reduced formation of the Miro/Milton complex, correlating with disrupted mitochondrial distribution in colorectal cancer cells that could be recovered by reconstitution of wild-type APC. Using proximity ligation assays, we identified endogenous APC-Miro/Milton complexes at mitochondria, and live-cell imaging showed that loss of APC slowed the frequency of anterograde mitochondrial transport to the membrane. We propose that APC helps drive mitochondria to the membrane to supply energy for cellular processes such as directed cell migration, a process disrupted by cancer mutations.  相似文献   

20.
Lipid droplets (LDs) are dynamic cellular organelles that control many biological processes. However, molecular components determining LD growth are poorly understood. Genetic analysis has indicated that Fsp27, an LD-associated protein, is important in controlling LD size and lipid storage in adipocytes. In this paper, we demonstrate that Fsp27 is focally enriched at the LD-LD contacting site (LDCS). Photobleaching revealed the occurrence of lipid exchange between contacted LDs in wild-type adipocytes and Fsp27-overexpressing cells but not Fsp27-deficient adipocytes. Furthermore, live-cell imaging revealed a unique Fsp27-mediated LD growth process involving a directional net lipid transfer from the smaller to larger LDs at LDCSs, which is in accordance with the biophysical analysis of the internal pressure difference between the contacting LD pair. Thus, we have uncovered a novel molecular mechanism of LD growth mediated by Fsp27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号