首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicases are motor enzymes that convert the chemical energy of NTP hydrolysis into mechanical force for motion and nucleic acid strand separation. Within the cell, helicases process a range of nucleic acid sequences. It is not known whether this composite rate of moving and opening the strands of nucleic acids depends on the base sequence. Our presteady state kinetic studies of helicases from two classes, the ring-shaped T7 helicase and two forms of non-ring-shaped hepatitis C virus (HCV) helicase, show that both the unwinding rate and processivity depend on the sequence and decrease as the nucleic acid stability increases. The DNA unwinding activity of T7 helicase and the RNA unwinding activity of HCV helicases decrease steeply with increasing base pair stability. On the other hand, the DNA unwinding activity of HCV helicases is less sensitive to base pair stability. These results predict that helicases will fall into a spectrum of modest to high sensitivity to base pair stability depending on their biological role in the cell. Modeling of the dependence provided the degree of the active involvement of helicase in base pair destabilization during the unwinding process and distinguished between passive and active mechanisms of unwinding.  相似文献   

2.
UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke   总被引:11,自引:0,他引:11  
Lee JY  Yang W 《Cell》2006,127(7):1349-1360
Helicases use the energy derived from nucleoside triphosphate hydrolysis to unwind double helices in essentially every metabolic pathway involving nucleic acids. Earlier crystal structures have suggested that DNA helicases translocate along a single-stranded DNA in an inchworm fashion. We report here a series of crystal structures of the UvrD helicase complexed with DNA and ATP hydrolysis intermediates. These structures reveal that ATP binding alone leads to unwinding of 1 base pair by directional rotation and translation of the DNA duplex, and ADP and Pi release leads to translocation of the developing single strand. Thus DNA unwinding is achieved by a two-part power stroke in a combined wrench-and-inchworm mechanism. The rotational angle and translational distance of DNA define the unwinding step to be 1 base pair per ATP hydrolyzed. Finally, a gateway for ssDNA translocation and an alternative strand-displacement mode may explain the varying step sizes reported previously.  相似文献   

3.
Helicases are a diverse group of molecular motors that utilize energy derived from the hydrolysis of nucleoside triphosphates (NTPs) to unwind and translocate along nucleic acids. These enzymes play critical roles in nearly all aspects of nucleic acid metabolism, and consequently, a detailed understanding of helicase mechanisms at the molecular level is essential. Over the past few decades, single-molecule techniques, such as optical tweezers, magnetic tweezers, laminar flow, fluorescence resonance energy transfer (FRET), and DNA curtains, have proved to be powerful tools to investigate the functional properties of both DNA and RNA helicases. These approaches allow researchers to manipulate single helicase molecules, perturb their free energy landscape to probe the chemo-mechanical activities of these motors, and to detect the conformational changes of helicases during unwinding. Furthermore, these techniques also provide the capability to distinguish helicase heterogeneity and monitor helicase motion at nanometer spatial and millisecond temporal resolutions, ultimately providing new insights into the mechanisms that could not be resolved by ensemble assays. This review outlines the single-molecule techniques that have been utilized for measurements of helicase activities and discusses helicase mechanisms with a focus on functional and mechanistic insights revealed through single-molecule investigations in the past five years.  相似文献   

4.
Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism.  相似文献   

5.
RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP). The results demonstrate that WRN helicase activity is inhibited in a strand-specific manner by BaP DE-dG adducts only when on the translocating strand. These adducts either occupy the minor groove without significant perturbation of DNA structure (trans adducts) or cause base displacement at the adduct site (cis adducts). In contrast, helicase activity is only mildly affected by intercalating BaP DE-dA adducts that locally perturb DNA double helical structure. This differs from our previous observation that intercalating dA adducts derived from benzo[c]phenanthrene (BcPh) DEs inhibit WRN activity in a strand- and stereospecific manner. Partial unwinding of the DNA helix at BaP DE-dA adduct sites may make such adducted DNAs more susceptible to the action of helicase than DNA containing the corresponding BcPh DE-dA adducts, which cause little or no destabilization of duplex DNA. The single-stranded DNA binding protein RPA, an auxiliary factor for WRN helicase, enabled the DNA unwinding enzyme to overcome inhibition by either the trans-R or cis-R BaP DE-dG adduct, suggesting that WRN and RPA may function together to unwind duplex DNA harboring specific covalent adducts that otherwise block WRN helicase acting alone.  相似文献   

6.
In recent years, it has been shown that helicases are able to perform functions beyond their traditional role in unwinding of double-stranded nucleic acids; yet the mechanistic aspects of these different activities are not clear. Our kinetic studies of Holliday junction branch migration catalysed by a ring-shaped helicase, T7 gp4, show that heterology of as little as a single base stalls catalysed branch migration. Using single-molecule analysis, one can locate the stall position to within a few base pairs of the heterology. Our data indicate that the presence of helicase alone promotes junction unfolding, which accelerates spontaneous branch migration, and individual time traces reveal complex trajectories consistent with random excursions of the branch point. Our results suggest that instead of actively unwinding base pairs as previously thought, the helicase exploits the spontaneous random walk of the junction and acts as a Brownian ratchet, which walks along duplex DNA while facilitating and biasing branch migration in a specific direction.  相似文献   

7.
Unwinding of unnatural substrates by a DNA helicase   总被引:6,自引:0,他引:6  
Helicases separate double-stranded DNA into single-stranded DNA intermediates that are required during replication and recombination. These enzymes are believed to transduce free energy available from ATPase activity to unwind the duplex and translocate along the nucleic acid lattice. The nature of enzyme-substrate interactions between helicases and duplex DNA substrates has not been well-defined. Most helicases require a single-stranded DNA overhang adjacent to duplex DNA in order to initiate unwinding. The strand containing the overhang is referred to as the loading strand whereas the complementary strand is referred to as the displaced strand. We have investigated the interactions between a DNA helicase and the DNA substrate by replacing the displaced strand with a nucleic acid mimic, peptide nucleic acid (PNA). PNA is capable of forming duplex structures with DNA according to Watson-Crick base pairing rules, but contains a N-(2-aminoethyl)glycine backbone in place of the deoxyribose phosphates. The PNA-DNA hybrids had higher melting temperatures than their DNA-DNA counterparts. Dda helicase, from bacteriophage T4, was able to unwind the DNA-PNA substrates at similar rates as DNA-DNA substrates. The results indicate that the rate-limiting step for unwinding is relatively insensitive to the chemical nature of the displaced strand and the thermal stability of oligonucleotide substrates.  相似文献   

8.
Flavones inhibit the hexameric replicative helicase RepA   总被引:2,自引:0,他引:2       下载免费PDF全文
Helicases couple the hydrolysis of nucleoside triphosphates (NTPs) to the unwinding of double-stranded nucleic acids and are essential in DNA metabolism. Thus far, no inhibitors are known for helicases except heliquinomycin isolated from Streptomyces sp. As the three-dimensional structure of the hexameric replicative DNA helicase RepA encoded by the broad host-range plasmid RSF1010 is known, this protein served as a model helicase to search for inhibitory compounds. The commercially available flavone derivatives luteolin, morin, myricetin and dimyricetin (an oxidation product of myricetin) inhibited the ATPase and double-stranded DNA unwinding activities of RepA. Dimyricetin was the most effective inhibitor for both activities. Single-stranded DNA-dependent RepA ATPase activity is inhibited non-competitively by all four compounds. This finding contrasts the inhibition of phosphoinositide 3-kinase by flavones that fit into the ATP binding pocket of this enzyme. Myricetin also inhibited the growth of a Gram-positive and a Gram-negative bacterial species. As we found other hexameric and non-hexameric prokaryotic helicases to be differentially sensitive to myricetin, flavones may provide substructures for the design of molecules helpful for unraveling the mechanism of helicase action and of novel pharmacologically useful molecules.  相似文献   

9.
Helicases mode of unwinding the nucleic acids and translocation along single stranded nucleic acids is still a subject of great curiosity. Based on the energy transduction and electrophilic interactions, we present a model to explain the mode of action of active helicases. This model considers that both strand separation as well as translocation is active processes fueled by NTP hydrolysis. The model proposes that the translocation appears to involve creeping of helicase over the ssNA lattice rather than inchworm movement.  相似文献   

10.
Helicases are proteins that harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of double-stranded nucleic acids. These enzymes have been much studied in isolation, and here we review what is known about the mechanisms of the unwinding process. We begin by considering the thermally driven 'breathing' of double-stranded nucleic acids by themselves, in order to ask whether helicases might take advantage of some of these breathing modes. We next provide a brief summary of helicase mechanisms that have been elucidated by biochemical, thermodynamic, and kinetic studies, and then review in detail recent structural studies of helicases in isolation, in order to correlate structural findings with biophysical and biochemical results. We conclude that there are certainly common mechanistic themes for helicase function, but that different helicases have devised solutions to the nucleic acid unwinding problem that differ in structural detail. In Part II of this review (to be published in the next issue of this journal) we consider how these mechanisms are further modified to reflect the functional coupling of these proteins into macromolecular machines, and discuss the role of helicases in several central biological processes to illustrate how this coupling actually works in the various processes of gene expression.  相似文献   

11.
DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions.  相似文献   

12.
Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions.  相似文献   

13.
14.
Bloom (BLM) and Werner (WRN) syndrome proteins are members of the RecQ family of SF2 DNA helicases. In this paper, we show that restricting the rotational DNA backbone flexibility, by introducing vinylphosphonate internucleotide linkages in the translocating DNA strand, inhibits efficient duplex unwinding by these enzymes. The human single-stranded DNA binding protein replication protein A (RPA) fully restores the unwinding activity of BLM and WRN on vinylphosphonate-containing substrates while the heterologous single-stranded DNA binding protein from Escherichia coli (SSB) restores the activity only partially. Both RPA and SSB fail to restore the unwinding activity of the SF1 PcrA helicase on modified substrates, implying specific interactions of RPA with the BLM and WRN helicases. Our data highlight subtle differences between SF1 and SF2 helicases and suggest that although RecQ helicases belong to the SF2 family, they are mechanistically more similar to the SF1 PcrA helicase than to other SF2 helicases that are not affected by vinylphosphonate modifications.  相似文献   

15.
Lo YH  Liu SW  Sun YJ  Li HW  Hsiao CD 《PloS one》2011,6(12):e29016
Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.  相似文献   

16.
Helicases, involved in a number of cellular functions, are motors that translocate along single-stranded nucleic acid and couple the motion to unwinding double-strands of a duplex nucleic acid. The junction between double- and single-strands creates a barrier to the movement of the helicase, which can be manipulated in vitro by applying mechanical forces directly on the nucleic acid strands. Single-molecule experiments have demonstrated that the unwinding velocities of some helicases increase dramatically with increase in the external force, while others show little response. In contrast, the unwinding processivity always increases when the force increases. The differing responses of the unwinding velocity and processivity to force have lacked explanation. By generalizing a previous model of processive unwinding by helicases, we provide a unified framework for understanding the dependence of velocity and processivity on force and the nucleic acid sequence. We predict that the sensitivity of unwinding processivity to external force is a universal feature that should be observed in all helicases. Our prediction is illustrated using T7 and NS3 helicases as case studies. Interestingly, the increase in unwinding processivity with force depends on whether the helicase forces basepair opening by direct interaction or if such a disruption occurs spontaneously due to thermal fluctuations. Based on the theoretical results, we propose that proteins like single-strand binding proteins associated with helicases in the replisome may have coevolved with helicases to increase the unwinding processivity even if the velocity remains unaffected.  相似文献   

17.
Helicases unwind RNA or DNA duplexes and displace proteins from nucleic acids in an ATP-dependent fashion. To unwind duplexes, helicases typically load onto one of the two nucleic acid strands, usually at a single-stranded region, and then translocate on this strand in a unidirectional fashion, thereby displacing the complementary DNA or RNA. Here we show that the DEAD-box RNA helicase Ded1 unwinds duplexes in a different manner. Ded1 uses the single-stranded region to gain access to the duplex. Strand separation is directly initiated from the duplex region and no covalent connection between the single strand and the duplex region is required. This new type of helicase activity explains observations with other DEAD-box proteins and may be the prototype for duplex-unwinding reactions in RNA metabolism.  相似文献   

18.
19.
20.
Helicases and nucleic acid translocases are motor proteins that have essential roles in nearly all aspects of nucleic acid metabolism, ranging from DNA replication to chromatin remodelling. Fuelled by the binding and hydrolysis of nucleoside triphosphates, helicases move along nucleic acid filaments and separate double-stranded DNA into their complementary single strands. Recent evidence indicates that the ability to simply translocate along single-stranded DNA is, in many cases, insufficient for helicase activity. For some of these enzymes, self assembly and/or interactions with accessory proteins seem to regulate their translocase and helicase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号