首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drug discovery from natural products   总被引:1,自引:0,他引:1  
Natural product compounds are the source of numerous therapeutic agents. Recent progress to discover drugs from natural product sources has resulted in compounds that are being developed to treat cancer, resistant bacteria and viruses and immunosuppressive disorders. Many of these compounds were discovered by applying recent advances in understanding the genetics of secondary metabolism in actinomycetes, exploring the marine environment and applying new screening technologies. In many instances, the discovery of a novel natural product serves as a tool to better understand targets and pathways in the disease process. This review describes recent progress in drug discovery from natural sources including several examples of compounds that inhibit novel drug targets.  相似文献   

2.
Ras gene mutation or overexpression can lead to tumorigenesis in multiple kinds of cancer, including glioma. However, no drugs targeting Ras or its expression products have been approved for clinical application thus far. Adenoviral gene therapy is a promising method for the treatment of glioma. In this study, the human glioma cell line U251 was co-cultured with recombinant adenovirus KGHV500, and the anti-tumor effects of KGHV500 were determined by MTT, scratch test, Transwell invasion, and apoptosis assays. Then, KGHV500 was delivered via the intravenous injection of CIK cells into glioma xenografts. Tumor volume, ki67 proliferation index, apoptosis levels, and anti-p21Ras scFv expression were tested to evaluate targeting ability, anti-tumor efficacy, and safety. We found that the KGHV500 exhibited anti-tumor activity in U251 cells and increased the intracellular expression of anti-p21Ras scFv compared with that in the control groups. CIK cells delivered KGHV500 to U251 glioma cell xenografts and enhanced anti-tumor activity against glioma xenografts compared to that produced by the control treatment. In conclusion, targeting Ras is a useful therapeutic strategy for gliomas and other Ras-driven cancers, and the delivery of anti-p21Ras scFv by recombinant adenovirus and CIK cells may play an essential role in the therapy of Ras-driven cancers.  相似文献   

3.
Angiogenesis has become a major target in cancer therapy. However, current therapeutic strategies have their limitations and raise several problems. In most tumours, anti-angiogenesis treatment targeting VEGF (vascular endothelial growth factor) has only limited overall survival benefit compared with conventional chemotherapy alone, and reveals several specific forms of resistance to anti-VEGF treatment. There is growing evidence that anti-VEGF treatment may induce tumour cell invasion by selecting highly invasive tumour cells or hypoxia-resistant cells, or by up-regulating angiogenic alternative pathways such as FGFs (fibroblast growth factors) or genes triggering new invasive programmes. We have identified new genes up-regulated during glioma growth on the chick CAM (chorioallantoic membrane). Our results indicate that anti-angiogenesis treatment in the experimental glioma model drives expression of critical genes which relate to disease aggressiveness in glioblastoma patients. We have identified a molecular mechanism in tumour cells that allows the switch from an angiogenic to invasive programme. Furthermore, we are focusing our research on alternative inhibitors that act, in part, independently of VEGF. These are endogenous molecules that play a role in the control of tumour growth and may constitute a starting point for further development of novel therapeutic or diagnostic tools.  相似文献   

4.
Anaplastic gliomas, the most common and malignant of primary brain tumors, frequently contain activating mutations and amplifications in promigratory signal transduction pathways. However, targeting these pathways with individual signal transduction inhibitors does not appreciably reduce tumor invasion, because these pathways are redundant; blockade of any one pathway can be overcome by stimulation of another. This implies that a more effective approach would be to target a component at which these pathways converge. In this study, we have investigated whether the molecular motor myosin II represents such a target by examining glioma invasion in a series of increasingly complex models that are sensitive to platelet-derived growth factor, epidermal growth factor, or both. Our results lead to two conclusions. First, malignant glioma cells are stimulated to invade brain through the activation of multiple signaling cascades not accounted for in simple in vitro assays. Second, even though there is a high degree of redundancy in promigratory signaling cascades in gliomas, blocking tumor invasion by directly targeting myosin II remains effective. Our results thus support our hypothesis that myosin II represents a point of convergence for signal transduction pathways that drive glioma invasion and that its inhibition cannot be overcome by other motility mechanisms.  相似文献   

5.
Chua KN  Sim WJ  Racine V  Lee SY  Goh BC  Thiery JP 《PloS one》2012,7(3):e33183
Epithelial Mesenchymal Transition (EMT) is a crucial mechanism for carcinoma progression, as it provides routes for in situ carcinoma cells to dissociate and become motile, leading to localized invasion and metastatic spread. Targeting EMT therefore represents an important therapeutic strategy for cancer treatment. The discovery of oncogene addiction in sustaining tumor growth has led to the rapid development of targeted therapeutics. Whilst initially optimized as anti-proliferative agents, it is likely that some of these compounds may inhibit EMT initiation or sustenance, since EMT is also modulated by similar signaling pathways that these compounds were designed to target. We have developed a novel screening assay that can lead to the identification of compounds that can inhibit EMT initiated by growth factor signaling. This assay is designed as a high-content screening assay where both cell growth and cell migration can be analyzed simultaneously via time-course imaging in multi-well plates. Using this assay, we have validated several compounds as viable EMT inhibitors. In particular, we have identified compounds targeting ALK5, MEK, and SRC as potent inhibitors that can interfere with EGF, HGF, and IGF-1 induced EMT signaling. Overall, this EMT screening method provides a foundation for improving the therapeutic value of recently developed compounds in advanced stage carcinoma.  相似文献   

6.
Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential.  相似文献   

7.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.  相似文献   

8.
High-grade gliomas, such as glioblastomas (GBMs), are very aggressive, invasive brain tumors with low patient survival rates. The recent identification of distinct glioma tumor subtypes offers the potential for understanding disease pathogenesis, responses to treatment and identification of molecular targets for personalized cancer therapies. However, the key alterations that drive tumorigenesis within each subtype are still poorly understood. Although aberrant NF-κB activity has been implicated in glioma, the roles of specific members of this protein family in tumorigenesis and pathogenesis have not been elucidated. In this study, we show that the NF-κB protein RelB is expressed in a particularly aggressive mesenchymal subtype of glioma, and loss of RelB significantly attenuated glioma cell survival, motility and invasion. We find that RelB promotes the expression of mesenchymal genes including YKL-40, a marker of the MES glioma subtype. Additionally, RelB regulates expression of Olig2, a regulator of cancer stem cell proliferation and a candidate marker for the cell of origin in glioma. Furthermore, loss of RelB in glioma cells significantly diminished tumor growth in orthotopic mouse xenografts. The relevance of our studies for human disease was confirmed by analysis of a human GBM genome database, which revealed that high RelB expression strongly correlates with rapid tumor progression and poor patient survival rates. Thus, our findings demonstrate that RelB is an oncogenic driver of mesenchymal glioma tumor growth and invasion, highlighting the therapeutic potential of inhibiting the noncanonical NF-κB (RelB-mediated) pathway to treat these deadly tumors.  相似文献   

9.
Cancer remains a major health issue in the world and the effectiveness of current therapies is limited resulting in disease recurrence and resistance to therapy. Therefore to overcome disease recurrence and have improved treatment efficacy there is a continued effort to develop and test new anticancer drugs that are natural or synthetic - (conventional chemotherapeutics, small molecule inhibitors) and biologic (antibody, tumor suppressor genes, oligonucleotide) product. In parallel, efforts for identifying molecular targets and signaling pathways to which cancer cells are “addicted” are underway. By inhibiting critical signaling pathways that is crucial for cancer cell survival, it is expected that the cancer cells will undergo a withdrawal symptom akin to “de-addiction” resulting in cell death. Thus, the key for having an improved and greater control on tumor growth and metastasis is to develop a therapeutic that is able to kill tumor cells efficiently by modulating critical signaling pathways on which cancer cells rely for their survival.Currently several small molecule inhibitors targeted towards unique molecular signaling pathways have been developed and tested in the clinic. Few of these inhibitors have shown efficacy while others have failed. Thus, targeting a single molecule or pathway may be insufficient to completely block cancer cell proliferation and survival. It is therefore important to identify and test an anticancer drug that can inhibit multiple signaling pathways in a cancer cell, control growth of both primary and metastatic tumors and is safe.One biologic agent that has the characteristics of serving as a potent anticancer drug is interleukin (IL)-24. IL-24 suppresses multiple signaling pathways in a broad-spectrum of human cancer cells leading to tumor cell death, inhibition of tumor angiogenesis and metastasis. Additionally, combining IL-24 with other therapies demonstrated additive to synergistic antitumor activity. Clinical testing of IL-24 as a gene-based therapeutic for the treatment of solid tumors demonstrated that IL-24 is efficacious and is safe. The unique features of IL-24 support its further development as an anticancer drug for cancer treatment.In this review we summarize the current understanding on the molecular targets and signaling pathways regulated by IL-24 in mediating its anticancer activity.  相似文献   

10.
Apoptosis is an important physiological process that promotes tissue homeostasis by eliminating unnecessary or malfunctioning cells. Abnormality in this process contributes to tumorigenesis, as well as the resistance to cancer treatment by radiation and chemotherapy. Restoration of normal apoptosis would not only promote cancer cell death and halt tumor progression, but also increase the response to many current cancer therapies. Although apoptosis induction is an important principle of currently used radiation and chemotherapy treatment, uncovering the mechanisms that govern this process, and which are lost during transformation, represents an important direction for realizing improved therapies for the future. This article first briefly reviews aspects of current discovery strategies for new anticancer therapeutics based on intervening in cell death pathways, and then discusses in more detail several cancer-relevant death pathways, which are disabled during transformation and which can be targeted therapeutically. These include anoikis/cell adhesion; energy metabolism and the unfolded protein response. Finally, we introduce a new concept, which utilizes cancer-specific apoptosis induced by oncolytic viruses. The discussion of these topics involves novel targets, compounds and virotherapy.  相似文献   

11.
MicroRNAs are beneficial for cancer therapy as they can simultaneously downregulate multiple targets involved in diverse biological pathways related to tumor development. In papillary thyroid cancer, many microRNAs were identified as differentially expressed factors in tumor tissues. In another way, recent studies revealed cell proliferation, cell cycling, apoptosis, and autophagy are critical pathways controlling papillary thyroid cancer development and progression. As miR-524-5p was approved as a cancer suppressor targeting multiple genes in several types of cancer cells, this study aims to characterize the role of miR-524-5p in the thyroid cancer cell. The expression of miR-524-5p was decreased in the papillary thyroid cancer tissues and cell lines, while forkhead box E1 (FOXE1) and ITGA3 were increased. In the clinical case, expression of miR-524-5p, FOXE1, and ITGA3 were significantly correlated with papillary thyroid cancer development and progression. FOXE1 and ITGA3 were approved as direct targets of miR-524-5p. miR-524-5p could inhibit papillary thyroid cancer cell viability, migration, invasion, and apoptosis through targeting FOXE1 and ITGA3. Cell cycling and autophagy pathways were disturbed by downregulation of FOXE1 and ITGA3, respectively. Collectively, miR-524-5p targeting on FOXE1 and ITGA3 prevents thyroid cancer progression through different pathways including cell cycling and autophagy.  相似文献   

12.
Recent advances in research on cancer have led to understand the pathogenesis of cancer and development of new anticancer drugs. Despite of these advancements, many tumors have been found to recur, undergo metastasis and develop resistance to therapy. Accumulated evidences suggest that small population of cancer cells known as cancer stem cells (CSC) are responsible for reconstitution and propagation of the disease. CSCs possess the ability to self-renew, differentiate and proliferate like normal stem cells. CSCs also appear to have resistance to anti-cancer therapies and subsequent relapse. The underlying stemness properties of the CSCs are reliant on multiple molecular targets such as signaling pathways, cell surface molecules, tumor microenvironment, apoptotic pathways, microRNA, stem cell differentiation, and drug resistance markers. Thus an effective therapeutic strategy relies on targeting CSCs to overcome the possible tumor relapse and chemoresistance. The targeted inhibition of these stem cell biomarkers is one of the promising approaches to eliminate cancer stemness. This review article summarizes possible targets of cancer cell stemness for the complete treatment of cancer.  相似文献   

13.
Glioblastoma multiforme is one of the deadliest human cancers and is characterized by a high degree of microglia and macrophage infiltration. The role of these glioma infiltrating macrophages (GIMs) in disease progression has been the subject of recent investigation. While initially thought to reflect an immune response to the tumor, the balance of evidence clearly suggests GIMs can have potent tumor-tropic functions and assist in glioma cell growth and infiltration into normal brain. In this review, we focus on the evidence for GIMs aiding mediating glioblastoma motility and invasion. We survey the literature for molecular pathways that are involved in paracrine interaction between glioma cells and GIMs and assess which of these might serve as attractive targets for therapeutic intervention.  相似文献   

14.
SUMMARY: Disease processes often involve crosstalks between proteins in different pathways. Different proteins have been used as separate therapeutic targets for the same disease. Synergetic targeting of multiple targets has been explored in combination therapy of a number of diseases. Potential harmful interactions of multiple targeting have also been closely studied. To facilitate mechanistic study of drug actions and a more comprehensive understanding the relationship between different targets of the same disease, it is useful to develop a database of known therapeutically relevant multiple pathways (TRMPs). Information about non-target proteins and natural small molecules involved in these pathways also provides useful hint for searching new therapeutic targets and facilitate the understanding of how therapeutic targets interact with other molecules in performing specific tasks. The TRMPs database is designed to provide information about such multiple pathways along with related therapeutic targets, corresponding drugs/ligands, targeted disease conditions, constituent individual pathways, structural and functional information about each protein in the pathways. Cross links to other databases are also introduced to facilitate the access of information about individual pathways and proteins. AVAILABILITY: This database can be accessed at http://bidd.nus.edu.sg/group/trmp/trmp.asp and it currently contains 11 entries of multiple pathways, 97 entries of individual pathways, 120 targets covering 72 disease conditions together with 120 sets of drugs directed at each of these targets. Each entry can be retrieved through multiple methods including multiple pathway name, individual pathway name and disease name. SUPPLEMENTARY INFORMATION: http://bidd.nus.edu.sg/group/trmp/sm.pdf  相似文献   

15.
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.  相似文献   

16.
17.
Microtubules, composed of alphabeta tubulin dimers, are dynamic polymers of eukaryotic cells. They play important roles in various cellular functions including mitosis. Microtubules exhibit differential dynamic behaviors during different phases of the cell cycle. Inhibition of the microtubule assembly dynamics causes cell cycle arrest leading to apoptosis; thus, qualifying them as important drug targets for treating several diseases including cancer, neuronal, fungal, and parasitic diseases. Although several microtubule-targeted drugs are successfully being used in cancer chemotherapy, the development of resistance against these drugs and their inherent toxicities warrant the development of new agents with improved efficacy. Several antimicrotubule agents are currently being evaluated for their possible uses in cancer chemotherapy. Benomyl, griseofulvin, and sulfonamides have been used as antifungal and antibacterial drugs. Recent reports have shown that these drugs have potent antitumor potential. These agents are shown to inhibit proliferation of different types of tumor cells and induce apoptosis by targeting microtubule assembly dynamics. However, unlike vincas and taxanes, which inhibit cancer cell proliferation in nanomolar concentration range, these agents act in micromolar range and are considered to have limited toxicities. Here, we suggest that these drugs may have a significant use in cancer chemotherapy when used in combination with other anticancer drugs.  相似文献   

18.
Choline phospholipid metabolism: A target in cancer cells?   总被引:6,自引:0,他引:6  
The experience of treating cancer over the past several decades overwhelmingly demonstrates that the disease continues to evade the vast array of drugs and treatment modalities available in the twenty-first century. This is not surprising in view of the complexity of this disease, and the multiplicities of pathways available to the cancer cell to enable its survival. Although the progression of cancer arrives at a common end point of cachexia, organ failure, and death, common pathways are rare in cancer. Identifying and targeting common pathways that would act across these levels of multiplicity is essential for the successful treatment of this disease. Over the past decade, one common characteristic consistently revealed by magnetic resonance spectroscopic studies is the elevation of phosphocholine and total choline-containing compounds in cancer cells and solid tumors. This elevation has been observed in almost every single cancer type studied with NMR spectroscopy and can be used as an endogenous biomarker of cancer. In this article, we have summarized some of the observations on the choline phospholipid metabolism of cancer cells and tumors, and make a case for targeting the aberrant choline phospholipid metabolism of cancer cells.  相似文献   

19.
Twelve analogs of makaluvamines have been synthesized. These compounds were evaluated for their ability to inhibit the enzyme topoisomerase II. Five compounds were shown to inhibit topoisomerase catalytic activity comparable to two known topoisomerase II targeting control drugs, etoposide and m-AMSA. Their cytotoxicity against human colon cancer cell line HCT-116 and human breast cancer cell lines MCF-7 and MDA-MB-468 has been evaluated. Four makaluvamine analogs exhibited better IC(50) values against HCT-116 as compared to control drug etoposide. One analog exhibited better IC(50) value against HCT-116 as compared to m-AMSA. All 12 of the makaluvamine analogs exhibited better IC(50) values against MCF-7 and MDA-MB-468 as compared to etoposide as well as m-AMSA.  相似文献   

20.
Caspase-dependent and -independent death pathways in cancer therapy   总被引:7,自引:0,他引:7  
The majority of current anticancer therapies induce tumor cell death through the induction of apoptosis. Alterations in the apoptotic pathways may determine tumor resistance to these therapies. Activation of the proteolytic cascade involving caspase family members is a critical component of the execution of cell death in apoptotic cells. However, recent studies suggest that cell death can proceed in the absence of caspases. In this review we describe the role of caspase-dependent and -independent pathways as targets for anticancer treatment; better understanding of diverse modes of tumor cell death will help to avoid ineffective treatment and provide a molecular basis for the new strategies targeting caspase-independent death pathways in apoptosis-resistant forms of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号