首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Invasive breast carcinomas are heterogeneous and exhibit distinct molecular features and biological behavior. Understanding the underlying molecular events that promote breast cancer progression is necessary to improve treatment and prognostication. TGF-β receptor III (TBR3) is a member of the TGF-β signaling pathway, with functions in cell proliferation and migration in malignancies, including breast cancer. Recent studies propose that TBR3 may function as a tumor suppressor and that its loss may correlate with disease progression. However, there are limited data on the expression of TBR3 in breast cancer in relationship to tumor type, hormonal receptor status and HER-2/neu, and patient outcome. In this study, we investigated the expression of TBR3 in a cohort of 205 primary invasive breast carcinomas in tissue microarrays (TMAs), with comprehensive clinical, pathological and follow- up information. Sections were stained for TBR3 and evaluated for intensity of reactivity based on a 4-tiered scoring system (1 to 4; TBR3 low = scores 1–2; TBR3 high = scores 3–4). Of the 205 invasive carcinomas, 123 were luminal type (95 type A, 28 type B), 8 were HER-2 type, and 62 were triple negative (TN). TBR3 was high in 112 (55 %) and low in 93 (45 %) cases. Low TBR3 was associated with higher histological grade and worse disease free and overall survival, all features of biologically aggressive breast carcinomas. TBR3 was significantly associated with the subtype of breast cancer, as low TBR3 was detected in 95 % of TN compared to 22 % of luminal tumors (p < 0.0001). We discovered a significant association between low TBR3 protein expression, TN breast cancer phenotype, and disease progression. These data suggest that TBR3 loss might be linked to the development of TN breast cancers and pave the way to investigating whether restoring TBR3 function may be a therapeutic strategy against TN breast carcinomas.  相似文献   

9.
10.
Vasopressin-activated calcium mobilizing receptor (VACM-1)/cullin 5 (cul 5) inhibits growth when expressed in T47D breast cancer cells by a mechanism that involves a decrease in MAPK phosphorylation and a decrease in the early growth response element (egr-1) concentration in the nucleus. Since both MAPK and egr-1 pathways can be regulated by 17β-estradiol, we next examined the effects of VACM-1 cDNA expression on estrogen-dependent growth in T47D cells and on estrogen receptor (ER) concentrations. Our results demonstrate that in T47D cells, both basal and 17β-estradiol-dependent increase in cell growth and MAPK phosphorylation were inhibited in cells transfected with VACM-1 cDNA. Further, Western blot and immunocytochemistry data analyses indicate that ER concentrations and its nuclear localization are significantly lower in cells transfected with VACM-1 cDNA when compared to controls. These data indicate that in the T47D cancer cell line VACM-1 inhibits growth by attenuating estrogen-dependent signaling responses. These findings may have implications in the development of cancer treatments.  相似文献   

11.
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in facilitating tumor progression and metastasis. Reducing the levels of HIF-1α might therefore be an important anticancer strategy. This could be achieved by understanding the key cellular events involved in HIF-1α activation. Present study explored the effect of phenethyl isothiocyanate (PEITC), a natural isothiocyanate, found in cruciferous vegetables on the expression of HIF-1α and HSP90 in breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231) under both normoxia and hypoxia. This study established the possible role of ROS in the up-regulation of these markers in breast cancer cells. PEITC-induced nuclear accumulation of Nrf2, increased the activities of several antioxidant enzymes, and thus reduced the ROS burden of the tumor cells by acting as an indirect antioxidant. This resulted in the down-regulation of HSP90 and thereby HIF-1α expression. HSP90 was also found to be involved in the regulation of HIF-1α. A probable link between down-regulation of HIF-1α with reduction of ROS by PEITC through induction of Nrf2 was determined. Finally, our study demonstrated that modulation of HIF-1α by PEITC retarded adhesion, aggregation, migration and invasion of the breast cancer cells, thereby showing anti-metastatic effect. Activities of MMPs (2 & 9) and expression of VEGF were also altered by PEITC.  相似文献   

12.
13.
14.
15.
Although immune checkpoint inhibition has been shown to effectively activate antitumor immunity in various tumor types, only a small subset of patients can benefit from PD-1/PD-L1 blockade. CD47 expressed on tumor cells protects them from phagocytosis through interaction with SIRPα on macrophages, while PD-L1 dampens T cell-mediated tumor killing. Therefore, dual targeting PD-L1 and CD47 may improve the efficacy of cancer immunotherapy. A chimeric peptide Pal-DMPOP was designed by conjugating th...  相似文献   

16.
Although glycine-rich antimicrobial peptides (AMPs) are found in animals and plants, very little has been reported on their chemistry, structure activity-relationship, and properties. We investigated those topics for Shepherin I (Shep I), a glycine-rich AMP with the unique amino acid sequence G1YGGHGGHGGHGGHGGHGGHGHGGGGHG28. Shep I and analogues were synthesized by the solid-phase method at 60 °C using conventional heating. Purification followed by chemical characterization confirmed the products' identities and high purity. Amino acid analysis provided their peptide contents. All peptides were active against the clinically important Candida species, but ineffective against bacteria and mycelia fungi. Truncation of the N- or C-terminal portion reduced Shep I antifungal activity, the latter being more pronounced. Carboxyamidation of Shep I did not affect the activity against C. albicans or C. tropicalis, but increased activity against S. cerevisiae. Carboxyamidated analogues Shep I (3-28)a and Shep I (6-28)a were equipotent to Shep I and Shep Ia against Candida species. As with most cationic AMPs, all peptides had their activity significantly reduced in high-salt concentrations, a disadvantage that is defeated if 10 µM ZnCl2 is present. At 100 µM, the peptides were practically not hemolytic. Shep Ia also killed C. albicans MDM8 and ATCC 90028 cells. Fluo-Shep Ia, an analogue labeled with 5(6)-carboxyfluorescein, was rapidly internalized by C. albicans MDM8 cells, a salt-sensitive process dependent on metabolic energy and temperature. Altogether, such results shed light on the chemistry, structural requirements for activity, and other properties of candidacidal glycine-rich peptides. Furthermore, they show that Shep Ia may have strong potential for use in topical application.  相似文献   

17.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States, and, even though 5-15% of the total CRC cases can be attributed to individual genetic predisposition, environmental factors could be considered major factors in susceptibility to CRC. Lifestyle factors increasing the risks of CRC include elevated body mass index, obesity, and reduced physical activity. Additionally, a number of dietary elements have been associated with higher or lower incidence of CRC. In this context, it has been suggested that diets high in fruit and low in meat might have a protective effect, reducing the incidence of colorectal adenomas by modulating the composition of the normal nonpathogenic commensal microbiota. In addition, it has been demonstrated that changes in abundance of taxonomic groups have a profound impact on the gastrointestinal physiology, and an increasing number of studies are proposing that the microbiota mediates the generation of dietary factors triggering colon cancer. High-throughput sequencing and molecular taxonomic technologies are rapidly filling the knowledge gaps left by conventional microbiology techniques to obtain a comprehensive catalog of the human intestinal microbiota and their associated metabolic repertoire. The information provided by these studies will be essential to identify agents capable of modulating the massive amount of gut bacteria in safe noninvasive manners to prevent CRC. Probiotics, defined as "live microorganisms which, when administered in adequate amounts, confer a health benefit on the host" (219), are capable of transient modulation of the microbiota, and their beneficial effects include reinforcement of the natural defense mechanisms and protection against gastrointestinal disorders. Probiotics have been successfully used to manage infant diarrhea, food allergies, and inflammatory bowel disease; hence, the purpose of this review was to examine probiotic metabolic activities that may have an effect on the prevention of CRC by scavenging toxic compounds or preventing their generation in situ. Additionally, a brief consideration is given to safety evaluation and production methods in the context of probiotics efficacy.  相似文献   

18.
19.
20.
Recently, we identified a peptide (ERα17p, P(295)LMIKRSKKNSLALSLT(311)) that corresponds to the 295-311 sequence of the estrogen receptor α (ERα, hinge region) and which exerts a panel of pharmacological effects in breast cancer cells. Remarkably, these effects can result from the interaction of ERα17p with the plasma membrane. Herein, we show that ERα17p adopts a β-sheet secondary structure when in contact with anionic phospholipids and that it is engulfed within the lipid bilayer. While ERα17p increases the fluidity of membrane mimics, it weakly internalizes in living cells. In light of the above, one may evoke one important role of the 295-311 region of the ERα: the corresponding peptide could be secreted/delivered to the extracellular medium to interact with neighboring cells, both intracellularly and at the membrane level. Finally, the 295-311 region of ERα being in proximity to the cystein-447, the palmitoylation site of the ERα raises the question of its involvement in the interaction/stabilization of the protein with the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号