首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helmut Kr?mer 《Autophagy》2010,6(7):974-975
Fusion with lysosomes is the common last step of endocytic trafficking and autophagy. Accordingly, several proteins are required in both pathways for cargoes to reach their destinations. Among these proteins, Drosophila Acinus stands out, as it exerts opposite effects on these two pathways, and thus establishes a new paradigm. Loss of Acinus function destabilizes early endosomes, thereby promoting the delivery of their cargo to lysosomes. By contrast, the maturation of autophagosomes to autolysosomes is inhibited in acn mutant cells. The increase in autophagy upon Acinus overexpression and its location to the nucleus are consistent with Acinus being a novel regulator of autophagy.Key words: fat body, endosomes, lysosomes, nuclear protein, Notch signaling, EGF ReceptorMuch of the core machinery that is required for the formation and maturation of autophagosomes and endosomes has been identified by genetic screens in yeast. But as both types of organelles are charged with more complex functions in multicellular organisms, it is not surprising to find additional layers of regulation imposed on them. One such regulatory element was revealed by a genetic screen we conducted in Drosophila.The screen''s original idea was to take advantage of the observation that many proteins acting in trafficking to lysosomes also function in the biogenesis of lysosome-related organelles. Among these, the pigment granules—responsible for the characteristic color of the fly eye—are easily scored for defects. Thus, we set up a primary screen for eye color mutants. Among the more than 500 original hits, a secondary screen identified those mutants that altered endocytic trafficking. Importantly, the genetic tool kit assembled by the fly community allowed us to screen homozygous mutant eyes in otherwise heterozygous flies. This schema made it possible to identify mutations that are homozygous lethal as one might expect for null alleles of genes required for lysosomal delivery.One of the unexpected genes identified by this screen was acinus (acn). The Acn protein lacks any domain signatures and is most similar to human Acinus, which had been implicated in the destruction of chromatin during apoptosis. It is not clear yet whether the Drosophila protein contributes to this function as well, but in acn null alleles chromatin condensation and fragmentation during apoptosis appear normal.There is, however, a profound effect on endocytic trafficking, as acn is required for stabilization of early endosomes. Staining for endocytosed ligands, such as Boss or Delta, is drastically reduced, concomitant with a reduction in early endosomes marked by Rab5 or the SNARE Avl. By contrast, late endosomes marked by Rab7 appear normal. These changes do not represent a block in the initial internalization of the ligands, as inhibition of lysosomal degradation reveals the same accumulation of internalized ligands in wild-type and acn mutant cells.Reduced stability of early endosomes also causes reduced signaling from EGF receptors and Notch, consistent with the emerging notion that signaling from these receptors may be linked to their uptake into early endosomes.Many mutants that disrupt endocytic trafficking also affect autophagy. We found that this theme extends to acn. The most accessible form of autophagy in Drosophila is found in fat bodies after a short period of starvation. Activation of the AKT1/TOR pathway triggers the formation of autophagosomes, which mature into autolysosomes by fusing with lysosomes. Loss of acn interferes with this maturation step, as shown by the reduction in LysoTracker staining and also by quantitative electron microscopy. Consistent with an effect on the maturation of autophagosomes, acn is required downstream of TOR signaling. For example, expression of dominant-negative TOR kinase is a powerful tool to induce autophagy in the fat body of wild-type, but not acn larvae.Interestingly, overexpression of Acn induces autophagy. This does not appear to be merely a side effect. Ubiquitous expression of Acn is lethal, but flies survive when autophagy is suppressed by knockdown of ATG5, a core element of the autophagy machinery. We find that this enhanced autophagy is also independent of the TOR pathway.Taken together, this analysis of the first null mutant of an acinus gene in any system reveals its function as a regulator of endosomal and autophagosomal dynamics, modulating developmental signaling and the cellular response to starvation. Our investigation of acn loss-of-function phenotypes reveals defects in membrane trafficking during endocytosis and autophagy. We were therefore surprised that Acn protein localized to the nucleus, and that we failed to detect any consistent localization to endocytic or autophagic structures. This unexpected finding was further tested with transgenes expressing Myc-tagged Acn in the context of a genomic rescue construct. This tagged protein, under control of its endogenous enhancer/promoter elements, rescued all aspects of Acn function, and, nevertheless, localized to the nucleus, rather than any endosomal compartment.These findings suggest that the mechanism by which Acinus proteins modify endocytosis and autophagy may be indirect. One model for such an indirect effect is suggested by the interaction of mammalian Acinus proteins with several RNA binding proteins. Modulation of the levels or structure of RNAs that encode specific elements of the endocytosis or autophagy pathways may constitute an exciting new element of their regulation. Testing this possibility and identifying potential targets regulated by this Acn-dependent mechanism are important challenges that we have just begun to address.  相似文献   

2.
Lysosomes are the site of degradation of obsolete intracellular material during autophagy and of extracellular macromolecules following endocytosis and phagocytosis. The membrane of lysosomes and late endosomes is enriched in highly glycosylated transmembrane proteins of largely unknown function. Significant progress has been made in recent years towards elucidating the pathways by which these lysosomal membrane proteins are delivered to late endosomes and lysosomes. While some lysosomal membrane proteins follow the constitutive secretory pathway and reach lysosomes indirectly via the cell surface and endocytosis, others exit the trans-Golgi network in clathrin-coated vesicles for direct delivery to endosomes and lysosomes. Sorting from the Golgi or the plasma membrane into the endosomal system is mediated by signals encoded by the short cytosolic domain of these proteins. This review will discuss the role of lysosomal membrane proteins in the biogenesis of the late endosomal and lysosomal membranes, with particular emphasis on the structural features and molecular mechanisms underlying the intracellular trafficking of these proteins.  相似文献   

3.
Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.  相似文献   

4.
《Autophagy》2013,9(3):417-418
Autophagy functions to degrade intracellular foreign microbial invaders by a process that is termed xenophagy (antimicrobial autophagy). Xenophagosomes undergo a stepwise maturation process culminating in a fusion event with lysosomes, after which the cargos are degraded. Recent investigations by our laboratory demonstrate that endocytic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are involved in the fusion between xenophagosomes and lysosomes. Knockdown of the combinational SNARE proteins Vti1b and VAMP8 with siRNAs disturbs the colocalization of LC3 with LAMP-1. We also find that the invasive efficiency of group A Streptococcus into cells is not altered by knockdown of VAMP8 or Vti1b, whereas cellular bactericidal efficiency is significantly diminished, indicating that xenophagy is functionally impaired. In addition, knockdown of these SNAREs inhibits the fusion of canonical autophagosomes with lysosomes. Together, these findings indicate that VAMP8 and Vti1b mediate fusion with lysosomes in both antimicrobial and canonical autophagy.  相似文献   

5.
《Autophagy》2013,9(2):228-229
Macroautophagy (a.k.a. autophagy) is a cellular process aimed at the recycling of proteins and organelles that is achieved when autophagosomes fuse with lysosomes. Accordingly, lysosomal dysfunctions are often associated with impaired autophagy. We demonstrated that inactivation of the sulfatase modifying factor 1 gene (Sumf1), a gene mutated in Multiple Sulfatase Deficiency (MSD), causes glycosaminoglycans (GAGs) to accumulate in lysosomes, which in turn disrupts autophagy. We utilized a murine model of MSD to study how impairment of this process affects chondrocyte viability and thus skeletal development.  相似文献   

6.
Interactions between Mycobacterium tuberculosis bacilli and alveolar macrophages have been extensively characterized, while similar analyses in epithelial cells have not been performed. In this study, we microscopically examined endosomal trafficking of M. tuberculosis strain Erdman in A549 cells, a human type II pneumocyte cell line. Immuno‐electron microscopic (IEM) analyses indicate that M. tuberculosis bacilli are internalized to a compartment labelled first with Rab5 and then with Rab7 small GTPase proteins. This suggests that, unlike macrophages, M. tuberculosis bacilli traffic to late endosomes in epithelial cells. However, fusion of lysosomes with the bacteria‐containing compartment appears to be inhibited, as illustrated by IEM studies employing LAMP‐2 and cathepsin‐L antibodies. Examination by transmission electron microscopy and IEM revealed M. tuberculosis‐containing compartments surrounded by double membranes and labelled with antibodies against the autophagy marker Lc3, providing evidence for involvement and intersection of the autophagy and endosomal pathways. Interestingly, inhibition of the autophagy pathway using 3‐methyladenine improved host cell viability and decreased numbers of viable intracellular bacteria recovered after 72 h post infection. Collectively, these datasuggest that trafficking patterns for M. tuberculosis bacilli in alveolar epithelial cells differ from macrophages, and that autophagy is involved this process.  相似文献   

7.
Amal O. Amer 《Autophagy》2013,9(5):633-634
Autophagy has emerged as a significant innate immune response to pathogens. Typically, autophagosomes deliver their contents to lysosomes for degradation. Some pathogens such as Salmonella enterica serovar Typhimurium succumb to autophagy and are transported to lysosomes for degradation. Yet, many professional pathogens, including Legionella pneumophila and Burkholderia cenocepacia, subvert this pathway exploiting autophagy to their advantage.  相似文献   

8.
9.
Macroautophagy/autophagy is a homeostatic process delivering cytoplasmic targets, including damaged organelles, to lysosomes for degradation; however, it is not completely understood how compromised endomembranes are recognized by the autophagic apparatus. We have described previously that the TRIM family of proteins act as receptors for selective autophagy. In this study we uncovered the property of TRIMs to directly interact with members of the family of cytosolic lectins termed galectins. Galectins patrol the cytoplasm and recognize compromised membranes. We show that TRIM16 uses LGALS3 (galectin 3) to detect damaged lysosomes and phagosomes. TRIM16 assembles the core autophagic machinery and is found in protein complexes with MTOR and TFEB, thus regulating their activity to set in motion endomembrane quality control. The TRIM16-LGALS3 system plays a key role in autophagic homeostasis of lysosomes and in the control of Mycobacterium tuberculosis in vivo.  相似文献   

10.
Autophagy is a highly conserved processing mechanism in eukaryotes whereby cytoplasmic components are engulfed in double-membrane vesicles called autophagosomes and are delivered into organelles such as lysosomes (mammal) or vacuoles (yeast/plant) for degradation and recycling of the resulting molecules. Isolation of yeastAUTOPHAGY (ATG) genes has facilitated the identification of correspondingArabidopsis ATG genes based on sequence similarity. Genetic and molecular analyses using knockout and/or knockdown mutants of those genes have unraveled the biological functions of autophagy during plant development, nutrient recycling, and environmental stress responses. Additional roles for autophagy have been suggested in the degradation of oxidized proteins during oxidative stress and the regulation of hypersensitive response (HR)-programmed cell death (PCD) during innate immunity. Our review summarizes knowledge about the structure and function of autophagic pathways andATG components, and the biological roles of autophagy in plants.  相似文献   

11.
《Autophagy》2013,9(11):1308-1315
The process of macroautophagy (herein referred to as autophagy) involves the formation of a closed double-membrane structure, called the autophagosome, and its subsequent fusion with lysosomes to form an autolysosome. Lysosomes are regenerated from autolysosomes after degradation of the sequestrated materials. In this study, we showed that mutations in cup-5, encoding the C. elegans Mucolipin 1 homolog, cause defects in the autophagy pathway. In cup-5 mutants, a variety of autophagy substrates accumulate in enlarged vacuoles that display characteristics of late endosomes and lysosomes, indicating defective proteolytic degradation in autolysosomes. We further revealed that lysosomes in coelomocytes (scavenger cells located in the body cavity) are smaller in size and more numerous in mutants with loss of autophagy activity. Furthermore, the enlarged vacuole accumulation abnormality and embryonic lethality of cup-5 mutants are partially suppressed by reduced autophagy activity. Our results indicate that the basal constitutive level of autophagy activity regulates the size and number of lysosomes and provides insights into the molecular mechanisms underlying mucolipidosis type IV disease.  相似文献   

12.
Fertilization triggers cell remodeling from each gamete to a totipotent zygote. Using Caenorhabditis elegans as a model system, it has been revealed that lysosomal degradation pathways play important roles in cellular remodeling during this developmental transition. Endocytosis and autophagy, two pathways leading to the lysosomes, are highly upregulated during this period. A subset of maternal membrane proteins is selectively endocytosed and degraded in the lysosomes before the first mitotic cell division. Autophagy is also induced shortly after fertilization and executes the degradation of paternally inherited embryonic organelles, e.g. mitochondria and membranous organelles. This mechanism underlies the maternal inheritance of the mitochondrial genome. Autophagy is also required for the removal of extra P‐granule (germ granules in C. elegans) components in somatic cells of early embryos and thereby for the specific distribution of P‐granules to germ cells. This review focuses on recent advances in the study of the physiological roles and mechanisms of lysosomal pathways during early development in C. elegans.   相似文献   

13.
14.
Rui Jia  Carlos M. Guardia  Jing Pu  Yu Chen 《Autophagy》2017,13(10):1648-1663
Whereas the mechanisms involved in autophagosome formation have been extensively studied for the past 2 decades, those responsible for autophagosome-lysosome fusion have only recently begun to garner attention. In this study, we report that the multisubunit BORC complex, previously implicated in kinesin-dependent movement of lysosomes toward the cell periphery, is required for efficient autophagosome-lysosome fusion. Knockout (KO) of BORC subunits causes not only juxtanuclear clustering of lysosomes, but also increased levels of the autophagy protein LC3B-II and the receptor SQSTM1. Increases in LC3B-II occur without changes in basal MTORC1 activity and autophagy initiation. Instead, LC3B-II accumulation largely results from decreased lysosomal degradation. Further experiments show that BORC KO impairs both the encounter and fusion of autophagosomes with lysosomes. Reduced encounters result from an inability of lysosomes to move toward the peripheral cytoplasm, where many autophagosomes are formed. However, BORC KO also reduces the recruitment of the HOPS tethering complex to lysosomes and assembly of the STX17-VAMP8-SNAP29 trans-SNARE complex involved in autophagosome-lysosome fusion. Through these dual roles, BORC integrates the kinesin-dependent movement of lysosomes toward autophagosomes with HOPS-dependent autophagosome-lysosome fusion. These findings reveal a requirement for lysosome dispersal in autophagy that is independent of changes in MTORC1 signaling, and identify BORC as a novel regulator of autophagosome-lysosome fusion.  相似文献   

15.
《Autophagy》2013,9(4):520-526
Autophagy mediates the bulk turnover of cytoplasmic constituents in lysosomes. During embryonic development in animals, a dramatic degradation of yolk proteins and synthesis of zygotic proteins takes place, leading to intracellular remodeling and cellular differentiation. Zebrafish represents a unique system to study autophagy due in part to its rapid embryonic development relative to other vertebrates. The technical advantages of this organism make it uniquely suited to various studies including high throughput drug screens. To study autophagy in zebrafish, we identified two zebrafish Atg8 homologs, lc3 and gabarap, and generated two transgenic zebrafish lines expressing GFP-tagged versions of the corresponding proteins. Similar to yeast Atg8 and mammalian LC3, zebrafish Lc3 undergoes post-translational modification starting at the pharyngula stage during embryonic development. We observed a high level of autophagy activity in zebrafish embryos, which can be further upregulated by the TOR inhibitor rapamycin or the calpain inhibitor calpeptin. In addition, zebrafish Gabarap accumulates within lysosomes upon autophagy induction. Thus, we established a convenient zebrafish tool to assay autophagic activity during embryogenesis in vivo.  相似文献   

16.
Autophagy is a multistep membrane traffic pathway. In contrast to autophagosome formation, the mechanisms underlying autophagosome–lysosome fusion remain largely unknown. Here, we describe a novel autophagy regulator, inositol polyphosphate‐5‐phosphatase E (INPP5E), involved in autophagosome–lysosome fusion process. In neuronal cells, INPP5E knockdown strongly inhibited autophagy by impairing the fusion step. A fraction of INPP5E is localized to lysosomes, and its membrane anchoring and enzymatic activity are necessary for autophagy. INPP5E decreases lysosomal phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2), one of the substrates of the phosphatase, that counteracts cortactin‐mediated actin filament stabilization on lysosomes. Lysosomes require actin filaments on their surface for fusing with autophagosomes. INPP5E is one of the genes responsible for Joubert syndrome, a rare brain abnormality, and mutations found in patients with this disease caused defects in autophagy. Taken together, our data reveal a novel role of phosphoinositide on lysosomes and an association between autophagy and neuronal disease.  相似文献   

17.
18.
Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L ‐Leucyl‐L‐leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy‐dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.  相似文献   

19.
In contrast to normal tissue, cancer cells display profound alterations in protein synthesis and degradation. Therefore, proteins that regulate endoplasmic reticulum (ER) homeostasis are being increasingly recognized as potential therapeutic targets. The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. However, interactions between autophagy, the proteasome, and ER stress pathways in cancer remain largely undefined. This study demonstrated that withaferin-A (WA), the biologically active withanolide extracted from Withania somnifera, significantly increased autophagosomes, but blocked the degradation of autophagic cargo by inhibiting SNARE-mediated fusion of autophagosomes and lysosomes in human pancreatic cancer (PC) cells. WA specifically induced proteasome inhibition and promoted the accumulation of ubiquitinated proteins, which resulted in ER stress-mediated apoptosis. Meanwhile, the impaired autophagy at early stage induced by WA was likely activated in response to ER stress. Importantly, combining WA with a series of ER stress aggravators enhanced apoptosis synergistically. WA was well tolerated in mice, and displayed synergism with ER stress aggravators to inhibit tumor growth in PC xenografts. Taken together, these findings indicate that simultaneous suppression of 2 key intracellular protein degradation systems rendered PC cells vulnerable to ER stress, which may represent an avenue for new therapeutic combinations for this disease.  相似文献   

20.
Macroautophagy (autophagy) is a multistep intracellular degradation system. Autophagosomes form, mature, and ultimately fuse with lysosomes, where their sequestered cargo molecules are digested. In contrast to autophagosome formation, our knowledge of autophagosome-lysosome fusion is limited. In a recent study, we identified a novel regulator of autophagy, INPP5E (inositol polyphosphate-5-phosphatase E), which is essential for autophagosome-lysosome fusion. INPP5E primarily functions in neuronal cells, and knockdown of the corresponding gene causes accumulation of autophagosomes by impairing fusion with lysosomes. Some INPP5E molecules localize at the lysosome, and both lysosomal localization and INPP5E enzymatic activity are crucial for autophagy. In addition, INPP5E decreases PtdIns(3,5)P2 levels on lysosomes, leading to activation of CTTN (cortactin) and stabilization of actin filaments, which are also essential for autophagosome-lysosome fusion. Mutations in INPP5E are causative for Joubert syndrome, a rare brain abnormality, and our results indicate that defects in autophagy play a critical role in pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号