首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constitutive overexpression of N-cadherin in mouse embryonic stem cells led to marked changes in the phenotype and adhesion properties of these cells. The changes included the formation of smaller embryonic bodies, elevated mRNA and total protein levels of N-cadherin, and increased amounts of p120 catenin and connexin-43. N-cadherin cells exhibited decreased attachment to non-cell surfaces, while their adhesiveness to each other and to rat neonatal cardiomyocytes was significantly elevated. The findings suggest that N-cadherin overexpression can facilitate electromechanical integration of stem cells into excitable tissues with endogenously high levels of N-cadherin, such as the heart and brain.Key words: stem cells, cardiomyocytes, N-cadherin, connexin 43, gap junctions  相似文献   

2.
3.
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) superfamily, is characterized by its ability to induce cartilage and bone formation. We have recently demonstrated that the multipotential, murine embryonic mesenchymal cell line, C3H10T1/2, when cultured at high density, is induced by BMP-2 or TGF-beta 1 to undergo chondrogenic differentiation. The high-cell-density requirement suggests that specific cell-cell interactions, such as those mediated by cell adhesion molecules, are important in the chondrogenic response. In view of our recent finding that N-cadherin, a Ca(2+)-dependent cell adhesion molecule, is functionally required in normal embryonic limb mesenchyme cellular condensation and chondrogenesis, we examine here whether N-cadherin is also involved in BMP-2 induction of chondrogenesis in C3H10T1/2 cells. BMP-2 stimulation of chondrogenesis in high-density micromass cultures of C3H10T1/2 cells was evidenced by Alcian blue staining, elevated [35S]sulfate incorporation, and expression of the cartilage matrix markers, collagen type II and cartilage proteoglycan link protein. With BMP-2 treatment, N-cadherin mRNA expression was stimulated 4-fold within 24 h, and by day 5, protein levels were stimulated 8-fold. An N-cadherin peptidomimic containing the His-Ala-Val sequence to abrogate homotypic N-cadherin interactions inhibited chondrogenesis in a concentration-dependent manner. To analyze the functional role of N-cadherin further, C3H10T1/2 cells were stably transfected with expression constructs of either full-length N-cadherin or a dominant negative, N-terminal deletion mutant of N-cadherin. Moderate (2-fold) overexpression of full-length N-cadherin augmented, whereas higher (4-fold) overexpression inhibited the BMP-2-chondrogenic effect. On the other hand, expression of the dominant negative N-cadherin mutant dramatically inhibited BMP-2 stimulated chondrogenesis. These data strongly suggest that upregulation of N-cadherin expression, at defined critical levels, is a candidate mechanistic component of BMP-2 stimulation of mesenchymal chondrogenesis.  相似文献   

4.
Tenogenic differentiation of stem cells is needed for tendon tissue engineering approaches. A current challenge is the limited information on the cellular-level changes during tenogenic induction. Tendon cells in embryonic and adult tendons possess an array of cell-cell junction proteins that include cadherins and connexins, but how these proteins are impacted by tenogenic differentiation is unknown. Our objective was to explore how tenogenic induction of mesenchymal stem cells (MSCs) using the transforming growth factor (TGF)β2 impacted protein markers of tendon differentiation and protein levels of N-cadherin, cadherin-11 and connexin-43. MSCs were treated with TGFβ2 for 21 days. At 3 days, TGFβ2-treated MSCs developed a fibroblastic morphology and significantly decreased levels of N-cadherin protein, which were maintained through 21 days. Similar decreases in protein levels were found for cadherin-11. Connexin-43 protein levels significantly increased at 3 days, but then decreased below control levels, though not significantly. Protein levels of scleraxis and tenomodulin were significantly increased at day 14 and 21, respectively. Taken together, our results indicate that TGFβ2 is an inducer of tendon marker proteins (scleraxis and tenomodulin) in MSCs and that tenogenesis alters the protein levels of N-cadherin, cadherin-11 and connexin-43. These findings suggest a role for connexin-43 early in tenogenesis, and show that early-onset and sustained decreases in N-cadherin and cadherin-11 may be novel markers of tenogenesis in MSCs.  相似文献   

5.
Endothelial cells (ECs) express VE-cadherin and N-cadherin, and recent data suggest that VE-cadherin levels are dependent on N-cadherin expression. While investigating changes in N-cadherin levels during endothelial monolayer maturation, the authors found that VE-cadherin levels are maintained in ECs despite a decrease in N-cadherin, suggesting that VE-cadherin levels may not depend on N-cadherin. Knockdown of N-cadherin did not affect VE-cadherin levels in ECs with low endogenous N-cadherin expression. Surprisingly, however, knockdown of N-cadherin in ECs with high endogenous N-cadherin expression increased VE-cadherin levels, suggesting an inverse relationship between the two. This was further supported by a decrease in VE-cadherin following overexpression of N-cadherin. Experiments in which p120, a catenin that binds N- and VE-cadherin, was knocked down or overexpressed indicate that these two cadherins compete for p120. These data demonstrate that VE-cadherin levels are not directly related to N-cadherin levels but may be inversely related due to competition for p120.  相似文献   

6.
Cell-cell and cell-extracellular matrix interactions between hematopoietic stem cells (HSCs) and their niches are critical for the maintenance of stem cell properties. Here, it is demonstrated that a cell adhesion molecule, N-cadherin, is expressed in hematopoietic stem/progenitor cells (HSPCs) and plays a critical role in the regulation of HSPC engraftment. Furthermore, overexpression of N-cadherin in HSCs promoted quiescence and preserved HSC activity during serial bone marrow (BM) transplantation (BMT). Inhibition of N-cadherin by the transduction of N-cadherin short hairpin (sh) RNA (shN-cad) reduced the lodgment of donor HSCs to the endosteal surface, resulting in a significant reduction in long-term engraftment. shN-cad-transduced cells were maintained in the spleen for six months after BMT, indicating that N-cadherin expression in HSCs is specifically required in the BM. These findings suggest that N-cadherin-mediated cell adhesion is functionally essential for the regulation of HSPC activities in the BM niche.  相似文献   

7.
8.
Growth factor erv1-like (Gfer) is an evolutionarily conserved sulfhydryl oxidase that is enriched in embryonic and adult stem cells and plays an essential prosurvival role in pluripotent embryonic stem cells. Here we show that knockdown (KD) of Gfer in hematopoietic stem cells (HSCs) compromises their in vivo engraftment potential and triggers a hyper-proliferative response that leads to their exhaustion. KD of Gfer in HSCs does not elicit a significant alteration of mitochondrial morphology or loss of cell viability. However, these cells possess significantly reduced levels of the cyclin-dependent kinase inhibitor p27(kip1). In contrast, overexpression of Gfer in HSCs results in significantly elevated total and nuclear p27(kip1). KD of Gfer results in enhanced binding of p27(kip1) to its inhibitor, the COP9 signalosome subunit jun activation-domain binding protein 1 (Jab1), leading to its down-regulation. Conversely, overexpression of Gfer results in its enhanced binding to Jab1 and inhibition of the Jab1-p27(kip1) interaction. Furthermore, normalization of p27(kip1) in Gfer-KD HSCs rescues their in vitro proliferation deficits. Taken together, our data demonstrate the presence of a novel Gfer-Jab1-p27(kip1) pathway in HSCs that functions to restrict abnormal proliferation.  相似文献   

9.
Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.  相似文献   

10.
Osteoblasts expressing the homophilic adhesion molecule N-cadherin form a hematopoietic stem cell (HSC) niche. Therefore, we examined how N-cadherin expression in HSCs relates to their function. We found that bone marrow (BM) cells highly expressing N-cadherin (N-cadherin(hi)) are not stem cells, being largely devoid of a Lineage(-)Sca1(+)cKit(+) population and unable to reconstitute hematopoietic lineages in irradiated recipient mice. Instead, long-term HSCs form distinct populations expressing N-cadherin at intermediate (N-cadherin(int)) or low (N-cadherin(lo)) levels. The minority N-cadherin(lo) population can robustly reconstitute the hematopoietic system, express genes that may prime them to mobilize, and predominate among HSCs mobilized from BM to spleen. The larger N-cadherin(int) population performs poorly in reconstitution assays when freshly isolated but improves in response to overnight in vitro culture. Their expression profile and lower cell-cycle entry rate suggest N-cadherin(int) cells are being held in reserve. Thus, differential N-cadherin expression reflects functional distinctions between two HSC subpopulations.  相似文献   

11.
Twist, a newly found EMT-inducer, has been reported to be up-regulated in those of diffuse-type gastric carcinomas with high N-cadherin level. We show here MKN45, a cell line derived from undifferentiated carcinomas cells, expresses high levels of Twist. Down-regulation of Twist, using an antisense Twist vector in MKN45 cells, inhibits cell migration and invasion, companied with a morphologic changes associated with MET. Suppression of Twist also decreases the expressions of N-cadherin and fibronectin, but not of E-cadherin in MKN45. In contrast, overexpression of Twist in MKN28, a cell line derived from moderate differentiated carcinomas, results in up-regulation of N-cadherin and fibronectin, companied with down-regulation of E-cadherin. Taken together, our results suggest that Twist regulates cell motility and invasion in gastric cancer cell lines, probably through the N-cadherin and fibronectin production.  相似文献   

12.
Cellular condensation is a requisite step in the initiation of mesenchymal chondrogenesis in the embryonic limb bud. We have previously shown that cellular condensation of limb chondroprogenitor mesenchymal cells is accompanied by elevated expression of N-cadherin during chondrogenesis both in vivo and in vitro. N-Cadherin-mediated cell-cell interaction is also functionally required for proper mesenchymal chondrogenesis both in vivo and in vitro. In this report, we have further analyzed the functional importance of N-cadherin in the cellular condensation-chondrogenesis pathway by examining N-cadherin expression and related activities in high density micromass cultures of chick limb mesenchymal cells in which chondrogenesis is being stimulated with the cationic polymer, poly-L-lysine (PL). The chondrogenesis-promoting action of PL is thought to involve the clustering of cells via ionic cross-linking, perhaps mimicking the action of an endogenous matrix component. Immunohistochemistry, immunoblotting, and Northern blot analysis all show that PL treatment results in a time-dependent increase in N-cadherin expression at both the protein and mRNA levels. In addition, inhibition of N-cadherin function with a neutralizing monoclonal antibody directed to its extracellular domain inhibits the chondrogenesis-stimulating effect of PL. PL treatment also alters the tyrosine-phosphorylation state of the N-cadherin associated signaling protein, beta-catenin. These results suggest that N-cadherin-mediated cell adhesion is a requisite regulatory component of the limb mesenchymal chondrogenic differentiation program, involving at least in part beta-catenin tyrosine phosphorylation as a signaling step.  相似文献   

13.
Gonadal steroids influence the morphology and function of neurons in the adult spinal cord through cellular and molecular mechanisms that are largely unknown. The cadherins are cell adhesion molecules that participate in the formation and organization of the CNS during embryonic development, and recent evidence suggests that the cadherins continue to regulate neural structure and function in adulthood. Using degenerate oligonucleotides coding conserved regions of the catenin-binding domain of classical cadherins in a RT-PCR cloning strategy, we identified several cadherin subtypes, the most frequently cloned being N-, E-, and R-cadherin, suggesting that these are the major classical cadherin subtypes present in the adult male rat lumbosacral spinal cord. We then examined cadherin expression levels of these cadherin subtypes under steroid conditions known to induce plastic changes in spinal motoneurons. Semiquantitative PCR revealed that mRNA levels of N-cadherin, but not E-cadherin or R-cadherin, are elevated in castrated rats treated with testosterone, 17 beta-estradiol, or dihydrotestosterone relative to castrate rats not treated with steroids. Immunolocalization of N-cadherin revealed that steroid treatment increased N-cadherin expression levels in functionally related neural populations whose morphology and function are regulated by steroids. These results suggest a role for N-cadherin in steroid-induced neuroplastic change in the adult lumbar spinal cord.  相似文献   

14.
15.
For stem cell-based treatment of neurodegenerative diseases a better understanding of key developmental signaling pathways and robust techniques for producing neurons with highest homogeneity are required. In this study, we demonstrate a method using N-cadherin-based biomimetic substrate to promote the differentiation of mouse embryonic stem cell (ESC)- and induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) without exogenous neuro-inductive signals. We showed that substrate-dependent activation of N-cadherin reduces Rho/ROCK activation and β-catenin expression, leading to the stimulation of neurite outgrowth and conversion into cells expressing neural/glial markers. Besides, plating dissociated cells on N-cadherin substrate can significantly increase the differentiation yield via suppression of dissociation-induced Rho/ROCK-mediated apoptosis. Because undifferentiated ESCs and iPSCs have low affinity to N-cadherin, plating dissociated cells on N-cadherin-coated substrate increase the homogeneity of differentiation by purging ESCs and iPSCs (~30%) from a mixture of undifferentiated cells with NPCs. Using this label-free cell selection approach we enriched differentiated NPCs plated as monolayer without ROCK inhibitor. Therefore, N-cadherin biomimetic substrate provide a powerful tool for basic study of cell—material interaction in a spatially defined and substrate-dependent manner. Collectively, our approach is efficient, robust and cost effective to produce large quantities of differentiated cells with highest homogeneity and applicable to use with other types of cells.  相似文献   

16.
17.
18.
Cardiomyocytes are known to differentiate spontaneously from embryonic stem (ES) cells when they formed aggregates, so called "embryoid bodies", in the presence of serum. In this study, we explored the induction of cardiomyocytes from mouse ES cells in chemically defined serum-free medium by using a mesoderm-inducing factor, BMP4. Comparing the different inductive methods, we found a candidate cell surface marker, N-cadherin, for cardiomyocyte progenitors from ES cells. N-cadherin-positive cells highly expressed cardiogenic markers, Nkx2.5, Tbx5, and Isl1, and showed a high differentiation rate into cardiomyocyte lineage. These results indicate that N-cadherin can be a useful cell surface marker for the progenitors of cardiomyocyte differentiated from ES cells in the serum-free culture.  相似文献   

19.
Little is known regarding the role of inter-cellular interaction during neuronal differentiation. Homophilic N-cadherin engagement between cells contributes to neuronal migration. However, its function in neurite initiation is not clear. In this study, we provide the first evidence that the adaptor protein SH2B1β regulated N-cadherin levels and neurite initiation. Overexpression of SH2B1β reduces N-cadherin levels and increased phosphotyrosine 654 β-catenin, leading to increased nerve growth factor-induced neurite initiation in PC12 cells, an established model for neuronal differentiation. In contrast, overexpression of the dominant-negative mutant SH2B1β(R555E) increases N-cadherin expression, cell-cell aggregation, and reduces neurite initiation. Moreover, SH2B1β binds directly or indirectly to N-cadherin indicative of its involvement in regulating the levels of N-cadherin. Taken together, these findings provide significant new insights into how N-cadherin-mediated inter-cellular interactions may influence neurite initiation and how SH2B1β may regulate these processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号