首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemotaxis is the directed movement of a cell towards a gradient of chemicals such as chemokines or growth factors. This phenomenon can be studied in organisms ranging from bacteria to mammalian cells, and here we will focus on eukaryotic amoeboid chemotaxis. Chemotactic responses are mediated by two major classes of receptors: GPCR''s and RTK''s, with multiple pathways signaling downstream of them, certain ones functioning in parallel. In this review we address two important features of amoeboid chemotaxis that will be important for further advances in the field. First, the application of in vivo imaging will be critical for providing insight into the functional requirements for chemotactic responses. We will briefly cover a number of systems in which in vivo imaging is providing new insights. Second, due to the network-type design of signaling pathways of eukaryotic chemotaxis, more refined phenotypic analysis will be necessary, and we will discuss recent analyses of the role of the phosphoinositide 3-kinase pathway in this light. We will close with some speculations regarding future applications of more detailed in vivo analysis and mechanistic understanding of eukaryotic amoeboid chemotaxis.Key Words: chemotaxis, signaling, in vivo models, development, phospholipase, phosphoinositide 3-kinase  相似文献   

2.
Chemotaxis is the ability of cells to move in the direction of an external gradient of signaling molecules. Cells are guided by actin-filled protrusions in the front, whereas myosin filaments retract the rear of the cell. Previous work demonstrated that chemotaxis of unpolarized amoeboid Dictyostelium discoideum cells is mediated by two parallel pathways, phosphoinositide-3-kinase (PI3K) and phospholipase A2 (PLA2). Here, we show that polarized cells exhibit very good chemotaxis with inhibited PI3K and PLA2 activity. Using genetic screens, we demonstrate that this activity is mediated by a soluble guanylyl cyclase, providing two signals. The protein localizes to the leading edge where it interacts with actin filaments, whereas the cyclic guanosine monophosphate product induces myosin filaments in the rear of the cell. We conclude that chemotaxis is mediated by multiple signaling pathways regulating protrusions at the front and rear of the cell. Cells that express only rear activity are polarized but do not exhibit chemotaxis, whereas cells with only front signaling are unpolarized but undergo chemotaxis.  相似文献   

3.
Cell-cell communication plays an important role in collective cell migration. However, it remains unclear how cells in a group cooperatively process external signals to determine the group’s direction of motion. Although the topology of signaling pathways is vitally important in single-cell chemotaxis, the signaling topology for collective chemotaxis has not been systematically studied. Here, we combine mathematical analysis and simulations to find minimal network topologies for multicellular signal processing in collective chemotaxis. We focus on border cell cluster chemotaxis in the Drosophila egg chamber, in which responses to several experimental perturbations of the signaling network are known. Our minimal signaling network includes only four elements: a chemoattractant, the protein Rac (indicating cell activation), cell protrusion, and a hypothesized global factor responsible for cell-cell interaction. Experimental data on cell protrusion statistics allows us to systematically narrow the number of possible topologies from more than 40,000,000 to only six minimal topologies with six interactions between the four elements. This analysis does not require a specific functional form of the interactions, and only qualitative features are needed; it is thus robust to many modeling choices. Simulations of a stochastic biochemical model of border cell chemotaxis show that the qualitative selection procedure accurately determines which topologies are consistent with the experiment. We fit our model for all six proposed topologies; each produces results that are consistent with all experimentally available data. Finally, we suggest experiments to further discriminate possible pathway topologies.  相似文献   

4.
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC(50) approximately 20 microM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.  相似文献   

5.
Amoeboid cells exhibit a highly dynamic motion that can be directed by external chemical signals, through the process of chemotaxis. Here, we propose a three-dimensional model for chemotactic motion of amoeboid cells. We account for the interactions between the extracellular substances, the membrane-bound proteins, and the cytosolic components involved in the signaling pathway that originates cell motility. We show two- and three-dimensional simulations of cell migration on planar substrates, flat surfaces with obstacles, and fibrous networks. The results show that our model reproduces the main features of chemotactic amoeboid motion. Our simulations unveil a complicated interplay between the geometry of the cell’s environment and the chemoattractant dynamics that tightly regulates cell motion. The model opens new opportunities to simulate the interactions between extra- and intra-cellular compounds mediated by the matrix geometry.  相似文献   

6.
Polarization--the clear and persistent localization of different signaling molecules to opposite ends of the cell-is critical for effective chemotaxis in eukaryotic systems. In many systems, polarization can also occur without an externally imposed chemical gradient. We build a modeling framework to study the relationship between the intrinsic capacity for polarization, and that induced by an external gradient. Working within this framework, we analyze different scenarios for the interaction of these pathways. The models are qualitatively simplified, motivated by known properties of the signaling pathways. We also examine the possible role of nonlinear transitions occurring in the polarization pathways. The modeling framework generates testable predictions regarding the relationship between intrinsic polarization and that induced during chemotaxis, and is the first step toward a systematic analysis of the interaction between these pathways.  相似文献   

7.
Redox signaling     
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have recently been shown to be involved in a multiplicity of physiological responses through modulation of signaling pathways. Some of the specific signaling components altered by reactive oxygen and nitrogen species (RONS) have begun to be identified. We will discuss RONS signaling by detailing the chemistry of signaling, the roles of antioxidant enzymes as signaling components, thiol chemistry in the specificity of RONS signaling, .NO-heme interactions, and some do's and don'ts of redox signal research. The principal points raised are that: (1) as with classic signaling pathways, signaling by RONS is regulated; (2) antioxidant enzymes are essential 'turn-off components in signaling; (3) spatial relationships are probably more important in RONS signaling than the overall 'redox state' of the cell; (4) deprotonation of cysteines to form the thiolate, which can react with RONS, occurs in specific protein sites providing specificity in signaling; (5) although multiple chemical mechanisms exist for producing nitrosothiols, their formation in vivo remains unclear; and (6) caution should be taken in the use of 'antioxidants' in signal transduction.  相似文献   

8.
In eukaryotic cells, there are two well characterized pathways that regulate translation initiation in response to stress, and each have been shown to be targeted by various viruses. We recently showed in a yeast-based model that the bacterial virulence factor YopJ disrupts one of these pathways, which is centered on the α-subunit of the translation factor eIF2. Here, we show in mammalian cells that induction of the eIF2 signaling pathway occurs following infection with bacterial pathogens and that, consistent with our yeast-based findings, YopJ reduces eIF2 signaling in response to endoplasmic reticulum stress, heavy metal toxicity, dsRNA, and bacterial infection. We demonstrate that the well documented activities of YopJ, inhibition of NF-κB activation and proinflammatory cytokine expression, are both dependent on an intact eIF2 signaling pathway. Unexpectedly, we found that cells with defective eIF2 signaling were more susceptible to bacterial invasion. This was true for pathogenic Yersinia, a facultative intracellular pathogen, as well as for the intracellular pathogens Listeria monocytogenes and Chlamydia trachomatis. Collectively, our data indicate that the highly conserved eIF2 signaling pathway, which is vitally important for antiviral responses, plays a variety of heretofore unrecognized roles in antibacterial responses.  相似文献   

9.
Grienberger C  Konnerth A 《Neuron》2012,73(5):862-885
Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.  相似文献   

10.
Wiskott-Aldrich Syndrome proteins (WASp) serve as important regulators of cytoskeletal organization and function. These modular proteins, which are well-conserved among eukaryotic species, act to promote actin filament assembly in response to cues from various signal transduction pathways. Genetic analysis has revealed a requirement for the single Drosophila homolog, Wasp (Wsp), in cell-fate decisions governing specific neuronal lineages. We have used this unique developmental context to assess the contributions of established signaling and cytoskeletal partners of WASp. We present biochemical and genetic evidence that, as expected, Drosophila Wsp performs its developmental role via the Arp2/3 complex, indicating conservation of the cytoskeletal aspect of Wsp function in vivo. In contrast, we find that association with the key signaling molecules CDC42 and PIP2 is not an essential requirement, implying that activation of Wsp function in vivo depends on additional or alternative signaling pathways.  相似文献   

11.
In vivo, eukaryotic cells are subjected simultaneously to a broad array of signals ranging from mitogens and inflammatory inputs to environmental stresses and developmental cues. The combinatorial nature of cellular signaling necessitates that a cell integrate its signal transduction pathways so as to implement rapidly and efficiently an appropriate suite of responses. Emerging evidence indicates that, over the course of evolution, cells have developed multiprotein signaling complexes, or "signalosomes" that mediate the coordinate regulation of different signaling pathways. Such molecular signal integration contrasts with the classical notion of signaling complexes assembled by scaffold proteins-entities that function to segregate specific pathways from one another. This review will focus on two signal integrating multiprotein complexes that involve Raf family kinases: the MLK3-B-Raf-Raf-1 complex and the Raf-1-Mst-2 complex.  相似文献   

12.
Directed cell migration and cell polarity are crucial in many facets of biological processes. Cellular motility requires a complex array of signaling pathways, in which orchestrated cross-talk, a feedback loop, and multi-component signaling recur. Almost every signaling molecule requires several regulatory processes to be functionally activated, and a lack of a signaling molecule often leads to chemotaxis defects, suggesting an integral role for each component in the pathway. We outline our current understanding of the signaling event that regulates chemotaxis with an emphasis on recent findings associated with the Ras, PI3K, and target of rapamycin (TOR) pathways and the interplay of these pathways. Ras, PI3K, and TOR are known as key regulators of cellular growth. Deregulation of those pathways is associated with many human diseases, such as cancer, developmental disorders, and immunological deficiency. Recent studies in yeast, mammalian cells, and Dictyostelium discoideum reveal another critical role of Ras, PI3K, and TOR in regulating the actin cytoskeleton, cell polarity, and cellular movement. These findings shed light on the mechanism by which eukaryotic cells maintain cell polarity and directed cell movement, and also demonstrate that multiple steps in the signal transduction pathway coordinately regulate cell motility.  相似文献   

13.
Ubiquitin and ubiquitin-like proteins (Ubls) are now at the center stage of molecular and cell biology because of their diverse functions in many fundamentally important cellular processes. Besides the celebrated role of ubiquitin in the 26S proteasome-mediated protein degradation pathway, the non-proteolytic functions of ubiquitin are being uncovered at a fast pace. The prominent examples include membrane trafficking, innate immunity, kinase signaling, chromatin dynamics and DNA damage response. Researchers in the area of DNA damage response have witnessed rapid progress within the past decade, largely stimulated by the seminal findings that ubiquitination and SUMOylation of a key DNA replication/repair protein, proliferating cell nuclear antigen (PCNA), controls precisely how eukaryotic cells respond to different types of DNA damage, and how cellular DNA damage repair or tolerance pathways are selected to cope with damage in the DNA genome. Here, we will review the recent findings on translesion synthesis (TLS) and its regulation by PCNA ubiquitination in eukaryotes. We will discuss two prevalent models, i.e., the postreplicative gap-filling and the polymerase switch, which have been invoked to account for eukaryotic cells' ability to overcome DNA damage associated replication blockade through TLS. Results from both in vitro reconstitution and from genetic systems will be discussed. We will also summarize the recent findings revealing the crosstalk between two major human DNA damage response pathways (the TLS and the Fanconi anemia pathways), and the ATR and ATM-independent regulation of PCNA ubiquitination. Lastly, new methods of preparing ubiquitinated PCNA will be reviewed. The availability of milligram levels of ubiquitinated PCNA will help our understanding of the molecular details in eukaryotic TLS.  相似文献   

14.
15.
The canonical protein tyrosine phosphatase PTP1B is an important regulator of diverse cellular signaling networks. PTP1B has long been thought to exert its influence solely from its perch on the endoplasmic reticulum (ER); however, an additional subpopulation of PTP1B has recently been detected in mitochondria extracted from rat brain tissue. Here, we show that PTP1B’s mitochondrial localization is general (observed across diverse mammalian cell lines) and sensitively dependent on the transmembrane domain length, C-terminal charge and hydropathy of its short (≤35 amino acid) tail anchor. Our electron microscopy of specific DAB precipitation revealed that PTP1B localizes via its tail anchor to the outer mitochondrial membrane (OMM), with fluorescence lifetime imaging microscopy establishing that this OMM pool contributes to the previously reported cytoplasmic interaction of PTP1B with endocytosed epidermal growth factor receptor. We additionally examined the mechanism of PTP1B’s insertion into the ER membrane through heterologous expression of PTP1B’s tail anchor in wild-type yeast and yeast mutants of major conserved ER insertion pathways: In none of these yeast strains was ER targeting significantly impeded, providing in vivo support for the hypothesis of spontaneous membrane insertion (as previously demonstrated in vitro). Further functional elucidation of the newly recognized mitochondrial pool of PTP1B will likely be important for understanding its complex roles in cellular responses to external stimuli, cell proliferation and diseased states.  相似文献   

16.
The CC chemokine, monocyte chemotactic protein, 1 (MCP-1) functions as a major chemoattractant for T-cells and monocytes by interacting with the seven-transmembrane G protein-coupled receptor CCR2. To identify which residues of MCP-1 contribute to signaling though CCR2, we mutated all the surface-exposed residues to alanine and other amino acids and made some selective large changes at the amino terminus. We then characterized the impact of these mutations on three postreceptor pathways involving inhibition of cAMP synthesis, stimulation of cytosolic calcium influx, and chemotaxis. The results highlight several important features of the signaling process and the correlation between binding and signaling: The amino terminus of MCP-1 is essential as truncation of residues 2-8 ([1+9-76]hMCP-1) results in a protein that cannot stimulate chemotaxis. However, the exact peptide sequence may be unimportant as individual alanine mutations or simultaneous replacement of residues 3-6 with alanine had little effect. Y13 is also important and must be a large nonpolar residue for chemotaxis to occur. Interestingly, both Y13 and [1+9-76]hMCP-1 are high-affinity binders and thus affinity of these mutants is not correlated with ability to promote chemotaxis. For the other surface residues there is a strong correlation between binding affinity and agonist potency in all three signaling pathways. Perhaps the most interesting observation is that although Y13A and [1+9-76]hMCP are antagonists of chemotaxis, they are agonists of pathways involving inhibition of cAMP synthesis and, in the case of Y13A, calcium influx. These results demonstrate that these two well-known signaling events are not sufficient to drive chemotaxis. Furthermore, it suggests that specific molecular features of MCP-1 induce different conformations in CCR2 that are coupled to separate postreceptor pathways. Therefore, by judicious design of antagonists, it should be possible to trap CCR2 in conformational states that are unable to stimulate all of the pathways required for chemotaxis.  相似文献   

17.
BACKGROUND: Tumor cells can move in a three-dimensional (3D) environment in either mesenchymal-type or amoeboid modes. In mesenchymal-type movement, cells have an elongated morphology with Rac-induced protrusions at the leading edge. Amoeboid cells have high levels of actomyosin contractility, and movement is associated with deformation of the cell body through the matrix without proteolysis. Because signaling pathways that control the activation of GTPases for amoeboid movement are poorly understood, we sought to identify regulators of amoeboid movement by screening an siRNA library targeting guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. RESULTS: We identified DOCK10, a Cdc42 GEF, as a key player in amoeboid migration; accordingly, we find that expression of activated Cdc42 induces a mesenchymal-amoeboid transition and increases cell invasion. Silencing DOCK10 expression promotes conversion to mesenchymal migration and is associated with decreased MLC2 phosphorylation and increased Rac1 activation. Consequently, abrogating DOCK10 and Rac1 expression suppresses both amoeboid and mesenchymal migration and results in decreased invasion. We show that the Cdc42 effectors N-WASP and Pak2 are required for the maintenance of the rounded-amoeboid phenotype. Blocking Cdc42 results in loss of mesenchymal morphology, arguing that Cdc42 is also involved in mesenchymal morphology through different activation and effector pathways. CONCLUSIONS: Previous work has identified roles of Rho and Rac signaling in tumor cell movement, and we now elucidate novel roles of Cdc42 signaling in amoeboid and mesenchymal movement and tumor cell invasion.  相似文献   

18.
Networks of signaling pathways perform complex temporal decoding functions in diverse biological systems, including the synapse, development, and bacterial chemotaxis. This paper examines temporal filtering and tuning properties of synaptic signaling pathways as a possible substrate for emergent temporal decoding. A mass action kinetic model of 16 synaptic signaling pathways was used to dissect out the contribution of these pathways in linear cascades and when coupled to form a network. The model predicts two primary mechanisms of temporal tuning of pathways: a weighted summation of responses of pathways with different timings and the presence of biochemical feedback loop(s) with emergent dynamics. Regulatory inputs act differently on these two tuning mechanisms. In the first case, regulators act like a gain-control on pathways with different intrinsic tuning. In the case of feedback loops, the temporal properties of the loop itself are changed. These basic tuning mechanisms may underlie specialized temporal tuning functions in more complex signaling systems in biology.  相似文献   

19.
Direct observations of cancer cell invasion underscore the importance of chemotaxis in invasion and metastasis. Yet, there is to date, no established method for real-time imaging of cancer chemotaxis towards factors clinically correlated with metastasis. A chamber has been designed and tested, called the Soon chamber, which allows the direct observation and quantification of cancer cell chemotaxis. The premise for the design of the Soon chamber is the incorporation of a dam, which creates a steep gradient while retaining stability associated with a pressure-driven system. The design is based on the characteristics of cancer cell motility such as relatively low speeds, and slower motility responses to stimuli compared to classical amoeboid cells like neutrophils and Dictyostelium. We tested MTLn3 breast carcinoma cells in the Soon chamber in the presence of an EGF gradient, obtaining hour-long time-lapses of chemotaxis. MTLn3 cells migrated further, more linearly, and at greater speeds within an EGF gradient compared to buffer controls. Computation of the degree of orientation towards the EGF/buffer source showed that MTLn3 cells were significantly more directional toward the EGF gradient compared to buffer controls. Analysis of the time-lapse data obtained during chemotaxis demonstrated that two populations of cancer cells were present. One population exhibited oscillations in directionality occurring at average intervals of 12 min while the second population exhibited sustained high levels of directionality toward the source of EGF. This result suggests that polarized cancer cells can avoid the need for oscillatory path corrections during chemotaxis.  相似文献   

20.
Chemotactic cells can exhibit extreme sensitivity to chemical gradients. Theoretical estimations of the signal inputs required for chemotaxis suggest that the response can be achieved under the strong influence of stochastic input noise generated by the receptors during the transmembrane signaling. This arises a fundamental question regarding the mechanisms for directional sensing: how do cells obtain reliable information regarding gradient direction by using stochastically operating receptors and the downstream molecules? To address this question, we have developed single molecule imaging techniques to visualize signaling molecules responsible for chemotaxis in living Dictyostelium cells, allowing us to monitor the stochastic signaling processes directly. Single molecule imaging of a chemoattractant bound to a receptor demonstrates that signal inputs fluctuate with time and space. Downstream signaling molecules, such as PTEN and a PH domain-containing protein that are constituent parts of chemotactic signaling system, can also be followed at single molecule level in living cells, illuminating the stochastic nature of chemotactic signaling processes. In this report, we start with a brief introduction of chemotactic response of the eukaryotic cells, followed by an explanation for single molecule imaging techniques, and finally discuss these applications to chemotactic signaling system of Dictyostelium cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号