首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exposure of cells to genotoxic agents results in activation of checkpoint pathways leading to cell cycle arrest. These arrest pathways allow repair of damaged DNA before its replication and segregation, thus preventing accumulation of mutations. The tumor suppressor retinoblastoma (RB) is required for the G(1)/S checkpoint function. In addition, regulation of the G(2) checkpoint by the tumor suppressor p53 is RB-dependent. However, the molecular mechanism underlying the involvement of RB and its related proteins p107 and p130 in the G(2) checkpoint is not fully understood. We show here that sustained G(2)/M arrest induced by the genotoxic agent doxorubicin is E2F-dependent and involves a decrease in expression of two mitotic regulators, Stathmin and AIM-1. Abrogation of E2F function by dominant negative E2F abolishes the doxorubicin-induced down-regulation of Stathmin and AIM-1 and leads to premature exit from G(2). Expression of the E7 papilloma virus protein, which dissociates complexes containing E2F and RB family members, also prevents the down-regulation of these mitotic genes and leads to premature exit from G(2) after genotoxic stress. Furthermore, genotoxic stress increases the levels of nuclear E2F-4 and p130 as well as their in vivo binding to the Stathmin promoter. Thus, functional complexes containing E2F and RB family members appear to be essential for repressing expression of critical mitotic regulators and maintaining the G(2)/M checkpoint.  相似文献   

2.
Activating mutations of RAS are prevalent in thyroid follicular neoplasms, which commonly have chromosomal losses and gains. In thyroid cells, acute expression of HRAS(V12) increases the frequency of chromosomal abnormalities within one or two cell cycles, suggesting that RAS oncoproteins may interfere with cell cycle checkpoints required for maintenance of a stable genome. To explore this, PCCL3 thyroid cells with conditional expression of HRAS(V12) or HRAS(V12) effector mutants were presynchronized at the G(1)/S boundary, followed by activation of expression of RAS mutants and release from the cell cycle block. Expression of HRAS(V12) accelerated the G(2)/M phase by approximately 4 h and promoted bypass of the G(2) DNA damage and mitotic spindle checkpoints. Accelerated passage through G(2)/M and bypass of the G(2) DNA damage checkpoint, but not bypass of the mitotic spindle checkpoint, required activation of mitogen-activated protein kinase (MAPK). However, selective activation of the MAPK pathway was not sufficient to disrupt the G(2) DNA damage checkpoint, because cells arrested appropriately in G(2) despite conditional expression of HRAS(V12,S35) or BRAF(V600E). By contrast to the MAPK requirement for radiation-induced G(2) arrest, RAS-induced bypass of the mitotic spindle checkpoint was not prevented by pretreatment with MEK inhibitors. These data support a direct role for the MAPK pathway in control of G(2) progression and regulation of the G(2) DNA damage checkpoint. We propose that oncogenic RAS activation may predispose cells to genomic instability through both MAPK-dependent and independent pathways that affect critical checkpoints in G(2)/M.  相似文献   

3.
Reactive oxygen species produced during hyperoxia damage DNA, inhibit proliferation in G1- through p53-dependent activation of p21(Cip1/WAF1/Sdi1), and kill cells. Because checkpoint activation protects cells from genotoxic stress, we investigated cell proliferation and survival of the murine type II epithelial cell line MLE15 during hyperoxia. These cells were chosen for study because they express Simian large and small-T antigens, which transform cells in part by disrupting the p53-dependent G1 checkpoint. Cell counts, 5-bromo-2'-deoxyuridine labeling, and flow cytometry revealed that hyperoxia slowed cell cycle progression after one replication, resulting in a pronounced G2 arrest by 72 h. Addition of caffeine, which inactivates the G2 checkpoint, diminished the percentage of hyperoxic cells in G2 and increased the percentage in sub-G1 and G1. Abrogation of the G2 checkpoint was associated with enhanced oxygen-induced DNA strand breaks and cell death. Caffeine did not affect DNA integrity or viability of cells exposed to room air. Similarly, caffeine abrogated the G2 checkpoint in hyperoxic A549 epithelial cells and enhanced oxygen-induced toxicity. These data indicate that hyperoxia rapidly inhibits proliferation after one cell cycle and that the G2 checkpoint is critical for limiting DNA damage and cell death.  相似文献   

4.
The cellular response to DNA damage is critical for maintenance of genomic integrity and inhibition of tumorigenesis. Mutations or aberrant expression of the E3 ubiquitin ligase EDD have been observed in a number of carcinomas and we recently reported that EDD modulates activity of the DNA damage checkpoint kinase, CHK2. Here, we demonstrate that EDD is necessary for G1/S and intra S phase DNA damage checkpoint activation and for the maintenance of G2/M arrest after double strand DNA breaks. Defective checkpoint activation in EDD-depleted cells led to radio-resistant DNA synthesis, premature entry into mitosis, accumulation of polyploid cells, and cell death via mitotic catastrophe. In addition to decreased CHK2 activation in EDD-depleted cells, the expression of several key cell cycle mediators including Cdc25A/C and E2F1 was altered, suggesting that these checkpoint defects may be both CHK2-dependent and -independent. These data support a role for EDD in the maintenance of genomic stability, emphasising the potential importance of dysregulated EDD expression and/or function in the evolution of cancer.  相似文献   

5.
DNA replication in higher eukaryotes requires activation of a Cdk2 kinase by Cdc25A, a labile phosphatase subject to further destabilization upon genotoxic stress. We describe a distinct, markedly stable form of Cdc25A, which plays a previously unrecognized role in mitosis. Mitotic stabilization of Cdc25A reflects its phosphorylation on Ser17 and Ser115 by cyclin B-Cdk1, modifications required to uncouple Cdc25A from its ubiquitin-proteasome-mediated turnover. Cdc25A binds and activates cyclin B-Cdk1, accelerates cell division when overexpressed, and its downregulation by RNA interference (RNAi) delays mitotic entry. DNA damage-induced G(2) arrest, in contrast, is accompanied by proteasome-dependent destruction of Cdc25A, and ectopic Cdc25A abrogates the G(2) checkpoint. Thus, phosphorylation-mediated switches among three differentially stable forms ensure distinct thresholds, and thereby distinct roles for Cdc25A in multiple cell cycle transitions and checkpoints.  相似文献   

6.
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.  相似文献   

7.
The relationship between cell cycling and apoptosis/programmed cell death has been perceived as either checkpoint arrests or mitotic aberration where common pathways between mitosis and apoptosis seem suggested. We show here evidence implicating both perceptions of cell cycle involvement. The process was initiated by hydroxyl free radicals (OH*) generated intracellularly from internalized vanadyl(4). Intranuclear sequestration of vanadyl(4) was verified by nuclear microscopy. Resultant high oxidative reactivity in the nucleus was shown by the redox indicator methylene blue, suggesting direct oxidative damage to genomic DNA. Oxidative stress was further enhanced by depletion of glutathione which is the main cellular reducing agent. Genomic degradation and fragmentation was confirmed by flow cytometric evaluation of terminal deoxynucleotidyl transferase (TdT)-mediated 3'OH end-labelling (TUNEL) of DNA nicks, and cell cycle DNA profiling demonstrating sub-G1 (sub-2N) accumulation. With DNA degradation, there was a G2M transient with hyperdiploid right-shifting, consistent with G2 arrest. G2 arrest was subsequently 'released' with abolition of G2M and all other cell cycle phases except for a solitary sub-G1 (apoptotic) peak. The cytological profile of this 'release' phenomenon was initially marked by the appearance of clusters of mitotic and apoptotic cells. At later stages, the cell population was composed exclusively of nuclear ghosts, apoptotic cells, mitotic cells, and mitotic cells with both chromosomes and apoptotic condensations. Concurrent and conjoint expression of cell death and cell division as the exclusive process of an entire cell population refuted the notion of mutual exclusivity between life and death. Zn2+, an endonuclease inhibitor, abolished all observed cytological and DNA profile changes.  相似文献   

8.
9.
10.
11.
12.
13.
HIV-1 Viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/stress checkpoint. Recently, we and several other groups showed that Vpr performs this activity by recruiting the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. While recruitment of this E3 ubiquitin ligase complex has been shown to be required for G2 arrest, the subcellular compartment where this complex forms and functionally acts is unknown. Herein, using immunofluorescence and confocal microscopy, we show that Vpr forms nuclear foci in several cell types including HeLa cells and primary CD4+ T-lymphocytes. These nuclear foci contain VPRBP and partially overlap with DNA repair foci components such as γ-H2AX, 53BP1 and RPA32. While treatment with the non-specific ATR inhibitor caffeine or depletion of VPRBP by siRNA did not inhibit formation of Vpr nuclear foci, mutations in the C-terminal domain of Vpr and cytoplasmic sequestration of Vpr by overexpression of Gag-Pol resulted in impaired formation of these nuclear structures and defective G2 arrest. Consistently, we observed that G2 arrest-competent sooty mangabey Vpr could form these foci but not its G2 arrest-defective paralog Vpx, suggesting that formation of Vpr nuclear foci represents a critical early event in the induction of G2 arrest. Indeed, we found that Vpr could associate to chromatin via its C-terminal domain and that it could form a complex with VPRBP on chromatin. Finally, analysis of Vpr nuclear foci by time-lapse microscopy showed that they were highly mobile and stable structures. Overall, our results suggest that Vpr recruits the DDB1-CUL4A (VPRBP) E3 ligase to these nuclear foci and uses these mobile structures to target a chromatin-bound cellular substrate for ubiquitination in order to induce DNA damage/replication stress, ultimately leading to ATR activation and G2 cell cycle arrest.  相似文献   

14.
15.
Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.  相似文献   

16.
In order to maintain a stable genome, cells need to detect and repair DNA damage before they complete the division cycle. To this end, cell cycle checkpoints prevent entry into the next cell cycle phase until the damage is fully repaired. Proper reentry into the cell cycle, known as checkpoint recovery, requires that a cell retains its original cell cycle state during the arrest. Here, we have identified Tousled‐like kinase 2 (Tlk2) as an important regulator of recovery after DNA damage in G2. We show that Tlk2 regulates the Asf1A histone chaperone in response to DNA damage and that depletion of Asf1A also produces a recovery defect. Both Tlk2 and Asf1A are required to restore histone H3 incorporation into damaged chromatin. Failure to do so affects expression of pro‐mitotic genes and compromises the cellular competence to recover from damage‐induced cell cycle arrests. Our results demonstrate that Tlk2 promotes Asf1A function during the DNA damage response in G2 to allow for proper restoration of chromatin structure at the break site and subsequent recovery from the arrest.  相似文献   

17.
DNA damage induced by radiation or DNA-damaging agents leads to apoptosis and cell cycle arrest. However, DNA damage-triggered signal transduction involved in these cellular responses is not well understood. We previously demonstrated an important role for SHP-2, a ubiquitously expressed SH2 domain-containing tyrosine phosphatase, in the DNA damage-induced apoptotic response. Here we report a potential role for SHP-2 in a DNA damage-activated cell cycle checkpoint. Cell cycle analysis and the mitotic index assay showed that following DNA damage induced by cisplatin or gamma-irradiation, the G2 (but not S) arrest response was diminished in SV40 large T antigen-immortalized embryonic fibroblast cells lacking functional SHP-2. Notably, reintroduction of wild-type SHP-2 into the mutant cells fully restored the DNA damage-induced G2 arrest response, suggesting a direct role of SHP-2 in the G2/M checkpoint. Further biochemical analysis revealed that SHP-2 constitutively associated with 14-3-3beta, and that Cdc25C cytoplasmic translocation induced by DNA damage was essentially blocked in SHP-2 mutant cells. Additionally, we showed that following DNA damage, activation of p38 kinase was significantly elevated, while Erk kinase activation was decreased in mutant cells, and treatment of SHP-2 mutant cells with SB203580, a selective inhibitor for p38 kinase, partially restored the DNA damage-induced G2 arrest response. These results together provide the first evidence that SHP-2 tyrosine phosphatase enhances the DNA damage G2/M checkpoint in SV40 large T antigen immortalized murine embryonic fibroblast cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号