首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAPKs engage substrates, MAP2Ks, and phosphatases via a docking groove in the C-terminal domain of the kinase. Prior crystallographic studies on the unphosphorylated MAPKs p38α and ERK2 defined the docking groove and revealed long-range conformational changes affecting the activation loop and active site of the kinase induced by peptide. Solution NMR data presented here for unphosphorylated p38α with a MEK3b-derived peptide (p38α/pepMEK3b) validate these findings. Crystallograhic data from doubly phosphorylated active p38α (p38α/T?GY?/pepMEK3b) reveal a structure similar to unphosphorylated p38α/MEK3b, and distinct from phosphorylated p38γ (p38γ/T?GY?) and ERK2 (ERK2/T?EY?). The structure supports the idea that MAP kinases adopt three distinct conformations: unphosphorylated, phosphorylated, and a docking peptide-induced form.  相似文献   

2.
p38与脓毒症     
张泓  李磊  毛恩强 《生命科学》2007,19(4):417-422
近年来在危重病监护方面有重大的进展,但是脓毒症仍有很高的发病率和死亡率[1],其本质是由于感染所致机体过度反应,引发炎症因子的过度分泌而引起的促、抗炎因子平衡失调.脂多糖(lipopolysaccharide,LPS)是引起脓毒症的重要因素之一,它可以激活细胞内多条信号转导通路.丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号转导途径是体内重要的信号转导通路,参与调节胚胎发育、细胞分化、细胞增殖和细胞死亡,其中MAPK家族中的p38与炎症反应有着密切关系.本文着重综述p38的分子结构、p38信号转导通路的激活、p38的底物以及在由脂多糖激活的脓毒症中p38发挥的重要作用和应用p38抑制剂的防治前景.  相似文献   

3.
Mitogen-activated protein kinases (MAPKs) are serine-threonine kinases that participate in signal transduction pathways. p38 MAPKs have four isoforms (p38α, p38β, p38γ, and p38δ) which are involved in multiple cellular functions such as proliferation, differentiation, survival, and migration. MAPK kinases phosphorylate p38s in the dual-phosphorylation motif, Thr-Gly-Tyr, located in their activation loop, which induces a conformational change that increases ATP binding affinity and catalytic activity. Several works have proposed that MAPK dynamics is a key factor in determining their function. However, we still do not understand the dynamical changes that lead to MAPK activation. In this work we have used molecular dynamics techniques to study the dynamical changes associated with p38γ activation, the only fully active MAPK crystallized so far. We performed MD simulations of p38γ in three different states, fully active with ATP, active without ATP, and inactive. We found that the dynamical fluctuations of the docking sites, important for protein-protein interactions, are regulated allosterically by changes in the active site. Interestingly, in the phosphorylated and ATP-bound states the whole protein dynamics lead to concerted motions of whole protein domains in contrast to the inactive state. The binding/unbinding of ATP participates in the reorientation of the two domains and in the regulation of protein plasticity. Our study shows that beyond the conformational changes associated with MAPK activation their correlated dynamics are highly regulated by phosphorylation and ATP binding. This means that MAPK plasticity may have a role in their catalytic activity, specificity, and protein-protein interactions and, therefore, in the outcome of the signaling network.  相似文献   

4.
细胞表面受体到核的信号通路是现代生物学研究的主题之一。细胞外各种刺激通过和膜受体偶联的G蛋白和酪氨酸激酶介导了一系列丝氨酸/苏氨酸激酶介导的级联反应,即分裂原激活蛋白激酶(MAPK)级联反应。MAPK级联反应把细胞外信号传递到核,并汇总了各种信号通路来的传息,因此研究细胞内MAPK的信号通路是十分重要的.本文简要介绍了ERK,JNK和p38三种MAPK途径,着重叙述了p38MAPK信号途径的性质和功能以及在免疫细胞中的作用和某些疾病的临床关系。  相似文献   

5.
Enucleation of erythroblasts during terminal differentiation is unique to mammals. Although erythroid enucleation has been extensively studied, only a few genes, including retinoblastoma protein (Rb), have been identified to regulate nuclear extrusion. It remains largely undefined by which signaling molecules, the extrinsic stimuli, such as erythropoietin (Epo), are transduced to induce enucleation. Here, we show that p38α, a mitogen-activated protein kinase (MAPK), is required for erythroid enucleation. In an ex vivo differentiation system that contains high Epo levels and mimics stress erythropoiesis, p38α is activated during erythroid differentiation. Loss of p38α completely blocks enucleation of primary erythroblasts. Moreover, p38α regulates erythroblast enucleation in a cell-autonomous manner in vivo during fetal and anemic stress erythropoiesis. Markedly, loss of p38α leads to downregulation of p21, and decreased activation of the p21 target Rb, both of which are important regulators of erythroblast enucleation. This study demonstrates that p38α is a key signaling molecule for erythroblast enucleation during stress erythropoiesis.  相似文献   

6.
Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-κB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38α in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38α deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38α in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells.  相似文献   

7.
Signaling processes are primarily promoted by molecular recognition and corresponding protein-protein interactions. One of the key eukaryotic signaling pathways is the MAP kinase cascade involved in vital cellular processes such as cell proliferation, differentiation, apoptosis, and stress response. The principle recognition site of MAP kinases, the common docking (CD) region, forms selective interactions with substrates, upstream activators, and phosphatases. A second docking site, defined as the DEF site interaction pocket (DEF pocket), is formed subsequent to ERK2 and p38α activation. Both crystal structures of p38α in its dually phosphorylated form and of intrinsically active mutants showed the DEF pocket, giving motivation for studying its role in substrate activation and selectivity. Mutating selected DEF pocket residues significantly decreased the phosphorylation levels of three p38α substrates (ATFII, Elk-1, and MBP) with no apparent effect on the phosphorylation of MK2 kinase. Conversely, mutating the CD region gave the opposite effect, suggesting p38α substrates can be classified into DEF-dependent and DEF-independent substrates. In addition, mutating DEF pocket residues decreased the autophosphorylation capability of intrinsically active p38α mutants, suggesting DEF-mediated trans-autophosphorylation in p38α. These results could contribute to understanding substrate selectivity of p38α and serve as a platform for designing p38α-selective DEF site blockers, which partially inhibit p38α binding DEF-dependent substrates, whereas maintaining its other functions intact. In this context, preliminary results using synthetic peptides reveal significant inhibition of substrate phosphorylation by activated p38α.  相似文献   

8.
Gaucher’s disease is caused by defects in acid β-glucosidase 1 (GBA1) and has been also proposed as an inflammatory disease. GBA1 cleaves glucosylceramide to form ceramide, an established bioactive lipid, and defects in GBA1 lead to aberrant accumulation in glucosylceramide and insufficient formation of ceramide. We investigated if the pro-inflammatory kinase p38 is activated in Gaucher’s disease, since ceramide has been proposed to suppress p38 activation. Three Gaucher’s disease mouse models were employed, and p38 was found to be activated in lung and liver tissues of all Gaucher’s disease mice. Most interestingly, neuronopathic Gaucher’s disease type mice, but not non-neuronopathic ones, displayed significant activation of p38 and up-regulation of p38-inducible proinflammatory cytokines in brain tissues. In addition, all type of Gaucher’s disease mice also showed increases in serum IL-6. As cellular signalling is believed to represent an in vivo inflammatory phenotype in Gaucher’s disease, activation of p38 and possibly its-associated formation of proinflammatory cytokines were assessed in fibroblasts established from neuronopathic Gaucher’s disease mice. In mouse Gaucher’s disease cells, p38 activation and IL-6 formation by TNF-α treatment were enhanced as compared to those of wild type. Furthermore, human fibroblasts from Gaucher’s disease patients also displayed increases in p38 activation and IL-6 formation as comparison to healthy counterpart. These results raise the potential that proinflammatory responses such as p38 activation and IL-6 formation are augmented in Gaucher’s disease.  相似文献   

9.
p38 MAPK信号传导通路   总被引:21,自引:0,他引:21  
姜勇  韩家淮 《生命科学》1999,11(3):102-106
丝裂原活化蛋白激酶(mitogen-activatedporoteinkinase,MAPK)介导了生长、发育,分裂,死亡,以及细胞间的功能同步等多种细胞生理功能,在哺乳动物细胞中已发现和克隆了ERK、JNK/SAPK,ERK5/BMK1和p38/RK四个MAPK亚族,这些新的MAPK介导了物理,化学反激,细菌产物,炎性细胞因子等多种刺激引起的细胞反应,p38亚族至少包括p38(α),p38β,p  相似文献   

10.
11.
12.
肺纤维化(Pulmonary fibrosis,PF)是一种进行性发展的、破坏性的纤维化疾病,其主要特征为肺泡上皮细胞损伤、炎性细胞浸润、上皮间充质转变、成纤维细胞的异常增殖和活化、细胞外基质的过度沉积,最终导致肺实质性的破坏。其具体机制不明,目前缺乏有效的治疗手段逆转这种疾病或阻止其发展。近年来的研究发现,信号传导通路在肺纤维化形成过程中的作用越来越受到关注,其中p38丝裂原活化蛋白激酶(p38mitogen-activated protein kinase,p38MAPK)信号通路通过介导炎性细胞浸润、成纤维细胞增殖等参与PF的形成过程。本文就p38MAPK在PF形成过程中的作用作一综述。  相似文献   

13.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   

14.
15.
Mitogen-activated protein (MAP) kinase p38α is activated in response to environmental stress and cytokines, and plays a significant role in inflammatory responses. For these reasons, it is an important target for the treatment of a wide range of inflammatory and autoimmune diseases. The crystals of p38α that we obtained by published procedures were usually small, quite mosaic, and difficult to reproduce and thus posed a difficulty for the intensive high-resolution studies required for a structure-guided drug discovery approach. Based on crystallographic and biochemical evidences, we prepared a single point mutation of a surface cysteine (C162S) and found that it prevents aggregation and improves the homogeneity and stability of the enzyme. This mutation also facilitates the crystallization process and increases the diffracting power of p38α crystals. Surprisingly, we found that the mutation induces a change in the conformation of a nearby surface loop resulting in stronger lattice interactions, consistent with the improved crystal quality. The mutant protein, because of its improved stability and strengthened lattice interactions, thus provides a significantly improved reagent for use in structure-based drug design for this important disease target.  相似文献   

16.
Alotofbioactivesubstancesareproducedbymonocytes/macrophagesonthestimulationofendotoxin,alsocaledaslipopolysaccharide(LPS),wh...  相似文献   

17.
Mitogen-activated protein kinase (MAPK) p38α was shown to be implicated in the organogenesis of the placenta, and such placental alteration is crucial for the development of hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. We aimed to analyze for the first time human placental expression of MAPK p38α in pregnancies complicated by HELLP. The placental expression of MAPK p38α was investigated by semiquantitative polymerase chain reaction using cDNA extracted from placental tissue of 15 pregnancies with HELLP syndrome and 15 gestational age-matched controls. Seven patients with HELLP also had intrauterine fetal growth restriction (IUGR). In placenta from pregnancy complicated by HELLP, the expression of MAPK p38α is significantly decreased compared to the group with normal pregnancy (p < 0.001), while no difference was found between the HELLP and HELLP with IUGR subpopulations. Our study shows for the first time that MAPK p38α is expressed in the human placenta. Pregnancies with placental dysfunction and hypertensive complications are characterized by a significantly decreased expression of MAPK p38α. Our observations suggest that p38 MAPK signaling may be essential in placental angiogenesis and functioning.  相似文献   

18.
19.
TGF-β1 and VEGF, both angiogenesis inducers, have opposing effects on vascular endothelial cells. TGF-β1 induces apoptosis; VEGF induces survival. We have previously shown that TGF-β1 induces endothelial cell expression of VEGF, which mediates TGF-β1 induction of apoptosis through activation of p38 mitogen-activated protein kinase (MAPK). Because VEGF activates p38(MAPK) but protects the cells from apoptosis, this finding suggested that TGF-β1 converts p38(MAPK) signaling from prosurvival to proapoptotic. Four isoforms of p38(MAPK) -α, β, γ, and δ-have been identified. Therefore, we hypothesized that different p38(MAPK) isoforms control endothelial cell apoptosis or survival, and that TGF-β1 directs VEGF activation of p38(MAPK) from a prosurvival to a proapoptotic isoform. Here, we report that cultured endothelial cells express p38α, β, and γ. VEGF activates p38β, whereas TGF-β1 activates p38α. TGF-β1 treatment rapidly induces p38α activation and apoptosis. Subsequently, p38α activation is downregulated, p38β is activated, and the surviving cells become refractory to TGF-β1 induction of apoptosis and proliferate. Gene silencing of p38α blocks TGF-β1 induction of apoptosis, whereas downregulation of p38β or p38γ expression results in massive apoptosis. Thus, in endothelial cells p38α mediates apoptotic signaling, whereas p38β and p38γ transduce survival signaling. TGF-β1 activation of p38α is mediated by VEGF, which in the absence of TGF-β1 activates p38β. Therefore, these results show that TGF-β1 induces endothelial cell apoptosis by shifting VEGF signaling from the prosurvival p38β to the proapoptotic p38α.  相似文献   

20.
INTRODUCTIONApoptosis is a fundamental important biologicalprocess that is required to maintain the integrity andhomeostasis of multicenular organism[1]. It seemsthat apoptosis is a predominant type of active cendeath in the liver. Endogenous factors, such astransforming growth factor FI (TGF-gi), activin A,CD95 ligand, and tumor necrosis factor (TNF) maybe involved in induction of apoptosis in the liver[2].transforming growth factor P (TGF-P) is amember of a super-family of multifu…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号