首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Sμ) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR.  相似文献   

2.
3.
Class switch recombination (CSR) is a programmed gene rearrangement in which a B cell which is producing IgM and IgD antibody develops into an IgG-, IgA- or IgE-expressing cell. This is achieved by recombination between switch regions located 5' of each of the immunoglobulin heavy chain constant regions, except Cdelta. The mechanism of CSR has not been resolved but it is thought to involve a double-strand break followed by end joining. It has previously been suggested that the nucleotide excision repair protein ERCC1 may be involved in CSR due to its known roles in removal of 3' single-stranded tails in various types of recombination. In this study, we examined class switching in cultured splenocytes from ERCC1-deficient mice and found no evidence of any deficiency.  相似文献   

4.
5.
Humoral immunity is the branch of the immune system maintained by B cells and mediated through the secretion of antibodies. Upon B cell activation, the immunoglobulin locus undergoes a series of genetic modifications to alter the binding capacity and effector function of secreted antibodies. This process is highlighted by a genomic recombination event known as class switch recombination (CSR) in which the default IgM antibody isotype is substituted for one of IgG, IgA, or IgE. Each isotype possesses distinct effector functions thereby making CSR crucial to the maintenance of immunity.Diversification of the immunoglobulin locus is mediated by the enzyme activation-induced cytidine deaminase (AID). A schematic video describing this process in detail is available online (http://video.med.utoronto.ca/videoprojects/immunology/aam.html). AID''s activity and the CSR pathway are commonly studied in the assessment of B cell function and humoral immunity in mice. The protocol outlined in this report presents a method of B cell isolation from murine spleens and subsequent stimulation with bacterial lipopolysaccharide (LPS) to induce class switching to IgG3 (for other antibody isotypes see Table 1). In addition, the fluorescent cell staining dye Carboxyfluorescein succinimidyl ester (CFSE) is used to monitor cell division of stimulated cells, a process crucial to isotype switching 1, 2.The regulation of AID and the mechanism by which CSR occurs are still unclear and thus in vitro class switch assays provide a reliable method for testing these processes in various mouse models. These assays have been previously used in the context of gene deficiency using knockout mice 3. Furthermore, in vitro switching of B cells can be preceded by viral transduction to modulate gene expression by RNA knockdown or transgene expression 4-6. The data from these types of experiments have impacted our understanding of AID activity, resolution of the CSR reaction, and antibody-mediated immunity in the mouse.Download video file.(58M, mp4)  相似文献   

6.
7.
8.
Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors.  相似文献   

9.
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development.  相似文献   

10.
Control of the intracellular levels of phosphatidylinositol-(3, 4, 5)-trisphosphate by PI3K and phosphatase and tensin homolog (PTEN) is essential for B cell development and differentiation. Deletion of the PI3K catalytic subunit p110delta leads to a severe reduction in B1 and marginal zone (MZ) B cells, whereas deletion of PTEN results in their expansion. We have examined the relationship between these two molecules by generating mice with a B cell-specific deletion of PTEN (PTENB) and a concurrent germline deletion of p110delta. The expanded B1 cell population of PTENB mice was reduced to normal levels in PTENB/p110delta mutant mice, indicating a critical role for the p110delta isoform in the expansion of B1 cells. However, numbers of MZ B cells in the PTENB/p110delta mutants was intermediate between wild-type and PTENB-deficient mice, suggesting an additional role for other PI3K catalytic isoforms in MZ differentiation. Furthermore, the defective class switch recombination in PTENB B cells was only partially reversed in PTENB/p110delta double mutant B cells. These results demonstrate an epistatic relationship between p110delta and PTEN. In addition, they also suggest that additional PI3K catalytic subunits contribute to B cell development and function.  相似文献   

11.
12.
Antibodies are assembled by a highly orchestrated series of recombination events during B cell development. One of these events, class switch recombination, is required to produce the IgG, IgE and IgA antibody isotypes characteristic of a secondary immune response. The action of the enzyme activation induced cytidine deaminase is now known to be essential for the initiation of this recombination event. Previous studies have demonstrated that the immunoglobulin switch regions acquire distinct histone modifications prior to recombination. We now present a high resolution analysis of these histone modifications across the IgE switch region prior to the initiation of class switch recombination in primary human B cells and the human CL-01 B cell line. These data show that upon stimulation with IL-4 and an anti-CD40 antibody that mimics T cell help, the nucleosomes of the switch regions are highly modified on histone H3, accumulating acetylation marks and tri-methylation of lysine 4. Distinct peaks of modified histones are found across the switch region, most notably at the 5' splice donor site of the germline (I) exon, which also accumulates AID. These data suggest that acetylation and K4 tri-methylation of histone H3 may represent marks of recombinationally active chromatin and further implicates splicing in the regulation of AID action.  相似文献   

13.
Ig heavy chain class switch recombination (CSR) determines the expression of Ig isotypes. The molecular mechanism of CSR and the factors regulating this process have remained elusive. Recombination occurs primarily within switch (S) regions, located upstream of each heavy chain gene (except Cdelta). These repetitive sequences contain consensus DNA-binding sites for the DNA-binding protein late SV40 factor (LSF) (CP2/leader-binding protein-1c). In this study, we demonstrate by EMSA that purified rLSF, as well as LSF within B cell extracts, directly binds both Smu and Salpha sequences. To determine whether LSF is involved in regulating CSR, two different LSF dominant negative variants were stably expressed in the mouse B cell line I.29 mu, which can be induced to switch from IgM to IgA. Overexpression of these dominant negative LSF proteins results in decreased levels of endogenous LSF DNA-binding activity and an increase in cells undergoing CSR. Thus, LSF represses class switching to IgA. In agreement, LSF DNA-binding activity was found to decrease in whole cell extracts from splenic B cells induced to undergo class switching. To elucidate the mechanism of CSR regulation by LSF, the interactions of LSF with proteins involved in chromatin modification were tested in vitro. LSF interacts with both histone deacetylases and the corepressor Sin3A. We propose that LSF represses CSR by histone deacetylation of chromatin within S regions, thereby limiting accessibility to the switch recombination machinery.  相似文献   

14.
Somatic hypermutation (SHM) and class switch recombination (CSR) allow B cells to make high affinity antibodies of various isotypes. Both processes are initiated by activation-induced cytidine deaminase (AID) to generate dG:dU mismatches in the immunoglobulin genes that are resolved differently in SHM and CSR to introduce point mutations and recombination, respectively. The MutL homolog MLH3 has been implicated in meiosis and DNA mismatch repair (MMR). Since it interacts with MLH1, which plays a role in SHM and CSR, we examined these processes in Mlh3-deficient mice. Although deficiencies in other MMR proteins result in defects in SHM, Mlh3(-/-) mice exhibited an increased frequency of mutations in their immunoglobulin variable regions, compared to wild type littermates. Alterations of mutation spectra were observed in the Jh4 flanking region in Mlh3(-/-) mice. Nevertheless, Mlh3(-/-) mice were able to switch to IgG3 or IgG1 with similar frequencies to control mice. This is the first instance where a loss of a DNA repair protein has a positive impact on the rate of SHM, suggesting that Mlh3 normally inhibits the accumulation of mutations in SHM.  相似文献   

15.
16.
Vaccines typically protect against (re)infections by generating pathogen‐neutralising antibodies. However, as we age, antibody‐secreting cell formation and vaccine‐induced antibody titres are reduced. Antibody‐secreting plasma cells differentiate from B cells either early post‐vaccination through the extrafollicular response or from the germinal centre (GC) reaction, which generates long‐lived antibody‐secreting cells. As the formation of both the extrafollicular antibody response and the GC requires the interaction of multiple cell types, the impaired antibody response in ageing could be caused by B cell intrinsic or extrinsic factors, or a combination of the two. Here, we show that B cells from older people do not have intrinsic defects in their proliferation and differentiation into antibody‐secreting cells in vitro compared to those from the younger donors. However, adoptive transfer of B cells from aged mice to young recipient mice showed that differentiation into extrafollicular plasma cells was favoured at the expense of B cells entering the GC during the early stages of GC formation. In contrast, by the peak of the GC response, GC B cells derived from the donor cells of aged mice had expanded to the same extent as those from the younger donors. This indicates that age‐related intrinsic B cell changes delay the GC response but are not responsible for the impaired antibody‐secreting response or smaller peak GC response in ageing. Collectively, this study shows that B cells from aged individuals are not intrinsically defective in responding to stimulation and becoming antibody‐secreting cells, implicating B cell‐extrinsic factors as the primary cause of age‐associated impairment in the humoral immunity.  相似文献   

17.
18.
Ig class switch recombination (CSR) occurs by an intrachromosomal deletional process between switch (S) regions in B cells. To facilitate the study of CSR, we derived a new B cell line, 1.B4.B6, which is uniquely capable of mu --> gamma3, mu --> epsilon, and mu --> alpha, but not mu --> gamma1 CSR at its endogenous loci. The 1.B4.B6 cell line was used in combination with plasmid-based isotype-specific S substrates in transient transfection assays to test for the presence of trans-acting switching activities. The 1.B4.B6 cell line supports mu --> gamma3, but not mu --> gamma1 recombination, on S substrates. In contrast, normal splenic B cells activated with LPS and IL-4 are capable of plasmid-based mu --> gamma1 CSR and demonstrate that this S plasmid is active. Activation-induced deaminase (AID) was used as a marker to identify existing B cell lines as possible candidates for supporting CSR. The M12 and A20 cell lines were identified as AID positive and, following activation with CD40L and other activators, were found to differentially support mu --> epsilon and mu --> alpha plasmid-based CSR. These studies provide evidence for two new switching activities for mu --> gamma1 and mu --> epsilon CSR, which are distinct from mu --> gamma3 and mu --> alpha switching activities previously described. AID is expressed in all the B cell lines capable of CSR, but cannot account for the isotype specificity defined by the S plasmid assay. These results are consistent with a model in which isotype-specific switching factors are either isotype-specific recombinases or DNA binding proteins with sequence specificity for S DNA.  相似文献   

19.
After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号