首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a novel assay to examine social interactions in Drosophila and, as a first attempt, apply it here at examining the behavior of Drosophila Fragile X Mental Retardation gene (dfmr1) mutants. Fragile X syndrome is the most common cause of single gene intellectual disability (ID) and is frequently associated with autism. Our results suggest that dfmr1 mutants are less active than wild-type flies and interact with each other less often. In addition, mutants for one allele of dfmr1, dfmr1B55, are more likely to come in close contact with a wild-type fly than another dfmr1B55 mutant. Our results raise the possibility of defective social expression with preserved receptive abilities. We further suggest that the assay may be applied in a general strategy of examining endophenoypes of complex human neurological disorders in Drosophila, and specifically in order to understand the genetic basis of social interaction defects linked with ID.Key words: Drosophila, Fragile X, autism, social behavior, novel assay  相似文献   

2.
《Fly》2013,7(3):216-225
We developed a novel assay to examine social interactions in Drosophila and, as a first attempt, apply it here at examining the behavior of Drosophila Fragile X Mental Retardation gene (dfmr1) mutants. Fragile X syndrome is the most common cause of single gene intellectual disability (ID) and is frequently associated with autism. Our results suggest that dfmr1 mutants are less active than wild-type flies and interact with each other less often. In addition, mutants for one allele of dfmr1, dfmr1B55, are more likely to come in close contact with a wild-type fly than another dfmr1B55 mutant. Our results raise the possibility of defective social expression with preserved receptive abilities. We further suggest that the assay may be applied in a general strategy of examining endophenoypes of complex human neurological disorders in Drosophila, and specifically in order to understand the genetic basis of social interaction defects linked with ID.  相似文献   

3.
InDrosophila melanogaster, gusAQ1, a cold-sensitive mutation, affects the behavior of larvae and adults tested with quinine sulfate. The temperature-sensitive period ofgusAQ1 occurs during embryogenesis. Another cold-sensitive mutation,gusEN13, alters the response of adults to quinine sulfate without affecting larval behavior. The temperature-sensitive period of this mutation is during the third larval instar.  相似文献   

4.
In this paper we present results of a comprehensive analysis of the effect of heat shock at different stages of ontogenesis (adult stage, development of mushroom bodies and the central complex) on courtship behavior (latency, duration and efficacy of courtship), sound production (pulse interval, dispersion of interpulse interval, percentage of distorted pulses, the mean duration of the pulse samples), learning and memory formation compared with the content of LIMK1 isoforms in male Drosophila melanogaster with altered structure of the limk1 gene. The heat shock is shown to affect the behavior parameters and LIMK1 content in the analyzed strains of Drosophila. The most pronounced effect of the heat shock was observed at the stage of development of the central complex (CC). Heat shock at CC and adults restores the ability of learning and memory formation in the mutant strain agn ts3 that normally is unable to learn and form memory. Correlations between changes of content of LIMK1 isoforms and behavioral parameters due to heat shock have not been established.  相似文献   

5.
Phototaxis mazes have been employed to select photopositive and photonegative strains of Drosophila simulans. The results suggest that phototactic behavior in D. simulans, as in other Drosophila species, is a polygenic trait. Hybridization using divergent strains revealed that the genes controlling negative phototactic behavior in D. simulans are autosomal, as opposed to D. melanogaster in which negative phototactic behavior is known to be very strongly sex-linked.  相似文献   

6.
Individuals of an alcohol dehydrogenase-negative strain of Drosophila melanogaster designated Adh n5 are resistant to ethanol poisoning at low but not at high temperatures. The basis for this behavior is that Adh n5 flies contain a mutant form of alcohol dehydrogenase which is less heat stable than that of wild-type flies. The mutation in Adh n5 maps at, or very close to, the presumptive structural locus and is not complemented by any of 11 other alcohol dehydrogenase-null mutants.This research was supported by Grant No. GM 18254 from the National Institutes of Health and Grant No. M55.2217 from the National Cancer Institute.Publication No. 768 from the Department of Biology, Johns Hopkins University.  相似文献   

7.
Polytene chromosome sections 63E1-6 of 3L in Drosophila melanogaster were studied by 3H-uridine and 3H-thymidine autoradiography in late third instar larvae and prepupae. In late third instar larvae 63E does not incorporate 3H-uridine. In prepupae, however, a large puff is formed in 63E which is most active in RNA synthesis. — 3H-thymidine labeling patterns and frequencies of regions 61A-64C were analysed and the non-puffed and puffed 63E sections were compared with reference sections. Both in late third instar larvae and in prepupae 63E shows late replication behavior. It is concluded that the decondensation of chromosome bands does not necessarily entail earlier and/or faster DNA replication.  相似文献   

8.
Comparative measurements are presented of the sequence complexity of the RNA stored in the eggs of two dipteran flies, Musca domestica and Drosophila melanogaster. The genome of Musca is about five times the size of the Drosophila genome and contains about 3.6 times as much single-copy sequence. As shown earlier, the interspersion of repetitive and single-copy sequence is of the short-period form in Musca, and is of the long-period form in Drosophila. The egg RNA complexities were determined by hybridization of excess RNA with radioactively labeled single-copy DNA. Complexity is expressed as the length (in nucleotides) of diverse single-copy sequence represented in the RNA. The complexity of the RNA of the Musca egg is about 2.4 x 107 nucleotides, and that of the Drosophila egg is about 1.2 x 107 nucleotides. The RNA of the Musca egg is similar to or very slightly lower in complexity than that of other egg RNAs, e.g., those of Xenopus and sea urchin. Compared to all previously measured egg RNAs, Drosophila egg RNA is low in sequence complexity.  相似文献   

9.
Male sexual behavior in Drosophila melanogaster, largely controlled by the fruitless (fru) gene encoding the male specific FruM protein, is among the best studied animal behaviors. Although substantial studies suggest that FruM specifies a neuronal circuitry governing all aspects of male sexual behaviors, recent findings show that FruM is not absolutely necessary for such behaviors. We propose that another regulatory gene doublesex encoding the male-specific DsxM protein builds a core neuronal circuitry that possesses the potential for courtship, which could be either induced through adult social experience or innately manifested during development by FruM expression in a broader neuronal circuitry. FruM expression levels and patterns determine the modes of courtship behavior from innate heterosexual, homosexual, bisexual, to learned courtship. We discuss how FruM expression is regulated by hormones and social experiences and tunes functional flexibility of the sex circuitry. We propose that regulatory genes hierarchically build the potential for innate and learned aspects of courtship behaviors, and expression changes of these regulatory genes among different individuals and species with different social experiences ultimately lead to behavioral diversification.  相似文献   

10.
The temporal and spatial pattern of replication of chorion gene clusters in follicle cells during oogenesis inDrosophila melanogaster andDrosophila nasuta was examined by [3H thymidine autoradiography and byin situ hybridization with chorion gene probes. When pulse labelled with [3H] thymidine, the follicle cells from stage 10–12 ovarian follicles of bothDrosophila melanogaster and,Drosophila nasuta often showed intense labelling at only one or two sites per nucleus.In situ hybridization of chorion gene probes derived fromDrosophila melanogaster with follicle cell nuclei ofDrosophila melanogaster andDrosophila nasuta revealed these discrete [3H] thymidine labelled sites to correspond to the two amplifying chorion gene clusters. It appears, therefore, that in spite of evolutionary divergence, the organization and programme of selective amplification of chorion genes in ovarian follicle cells have remained generally similar in these two species. The endoreplicated and amplified copies of each chorion gene cluster remain closely associated but the two clusters occupy separate sites in follicle cell nucleus.  相似文献   

11.
Summary The transdetermination capacities of leg discs ofDrosophila melanogaster were examined by mechanically disrupting and kneading whole discs from late third instar larvae and by culturing the resulting tissue mass for 10–14 days in adult female abdomens where the cells continued to divide. The grown implants were then dissected from the abdomens and injected into third instar larvae to undergo metamorphosis.After this treatment, prothoracic leg discs ofDrosophila melanogaster transdetermined with a high frequency (59% of all implants) to wing. Mesothoracic leg discs also transdetermined to wing, but at a very low frequency (4%). Metathoracic leg discs exhibited the same low frequency of transdetermination (4%), but in this case the direction of transdetermination was to haltere (Table 1,D. melanogaster).Very similar results were obtained with leg discs ofDrosophila nigromelanica (Table 1,D. nigromelanica), showing that the peculiar behavior of the three leg discs is not unique forDrosophila melanogaster.The homeotic mutation Polycomb (Pc 3) which partially transforms meso- and metathoracic legs into prothoracic legs did not significantly increase the frequencies of transdetermination in these leg dises and had clearly no effect on the direction of transdetermination (Table 1).We dedicate this publication to the memory of our teacher and advisor, the late Professor Ernst Hadorn, whose enthusiasm and interest stimulated our work  相似文献   

12.
Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases1. We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials2-4. The rapid iterative negative geotaxis (RING) assay5 has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously using large number of animals, with the high-throughput approach making it more amenable for screening experiments.  相似文献   

13.
E. Zouros 《Genetics》1981,97(3-4):703-718
The chromosomal determination of interspecific differences in mating behavior was studied in the interfertile pair, Drosophila arizonensis and Drosophila mojavensis, by means of chromosomal substitutions. Interspecific crossing over was avoided by crossing hybrid males to parental females, and identification of the origin of each chromosome in backcrossed hybrids was possible by means of allozyme markers. It was found that male mating behavior is controlled by factors located in the PGM-marked chromosome (which, in other Drosophila species, is part of the X chromosome) and in the Y chromosome. The other chromosomes influence male sexual behavior through their interactions with each other and with the PGM-marked chromosome, but their overall effect is minor. Female mating behavior is controlled by factors located in the ODH-marked and AMY-marked chromosomes, with the other chromosomes exercising a small additive effect. Hence, the two sex-specific behaviors are under different genetic control. Cytoplasmic origin has no effect on the mating behavior of either sex. There appears to be no correlation between a chromosome's structural diversity (i.e., amounts of inversion polymorphism within a species or numbers of fixed inversions across species) and its contribution to sexual isolation. These findings are in general agreement with those from similar Drosophila studies and may not be specific to the species studied here.  相似文献   

14.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP1, to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons2-5. Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding6 (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER7 with a calcium imaging technique8 using GCaMP3.01, 9, I have established an experimental system, where we can monitor activity of neurons in the feeding center – the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca2+ imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.  相似文献   

15.
The effects of mutations and genetic background on the mating activity of males and receptivity of females Drosophila melanogaster have been studied at different population densities. Population density, as well as its combinations with other factors, significantly affects mating behavior of D. melanogaster. There are two distinct trends in the effect of this factor on mating behavior: the maximum larval overpopulation may cause either a significant suppression of the behaviors studied or an increase in their expressivity. The mating behaviors of w a and cn mutants against a certain genetic background changed similarly in response to varying population density.  相似文献   

16.
Summary The sites of seven tRNA genes (Arg-2, Lys-2, Ser-2b, Ser-7, Thr-3, Thr-4, Val-3b) were studied by in situ hybridization.125I-labeled tRNA probes fromDrosophila melanogaster were hybridized to spreads of polytene chromosomes prepared from fourDrosophila species representing different evolutionary lineages (D. melanogaster, Drosophila hydei, Drosophila pseudoobscura, andDrosophila virilis). Most tRNA loci occurred on homologous chromosomal elements of all four species. In some cases the number of hybridization sites within an element varied and sites on nonhomologous elements were found. It was observed that both tRNA 2 Arg and tRNA 2 Lys hybridized to the same site on homologous elements in several species. These data suggest a limited amount of exchange among different linkage groups during the evolution ofDrosophila species.  相似文献   

17.
The allelic state of gene flamenco has been determined in a number of Drosophila melanogaster strains using the ovoD test. The presence of an active copy of gypsy in these strains was detected by restriction analysis. Then male reproduction behavior was studied in the strains carrying a mutation in gene flamenco. In these experiments mating success has been experimentally estimated in groups of flies. It has been demonstrated that the presence of mutant allele flam MS decreases male mating activity irrespective of the presence or absence of mutation white.The active copy of gypsy does not affect mating activity in the absence of the mutation in gene flamenco. Individual analysis has demonstrated that mutation flam MS results in characteristic changes in courtship: flam MS males exhibit a delay in the transition from the orientation stage to the vibration stage (the so-called vibration delay). The role of locus flamenco in the formation of male mating behavior in Drosophila is discussed.  相似文献   

18.
The sex chromosome bivalent was examined in Drosophila melanogaster males possessing the In(1)sc 4Lsc8R X chromosome. Three-dimensional reconstructions from electron micrographs of serially cut thin sections were made. A large proportion of the kinetochores of In(1)sc 4Lsc8R/Y bivalents did not face opposite poles during metaphase I and anaphase I. This suggests that In(1)sc 4Lsc8R/Y bivalents may have difficulty achieving bipolar stability. Delay in achieving bipolar stability could contribute to the nondisjunctional behavior found in In(1)sc 4Lsc8R/Y males.  相似文献   

19.
Male courtship ritual is among the main behavioral characteristics of Drosophila. This is a complex, genetically determined process consisting of four general stages: orientation, vibration, licking, and attempts at copulation (or successful copulation). Several genes are known that control some stages of this behavior. Most of them have pleiotropic effects and are involved in other biological processes. Earlier, we have shown that a mutation in locus flamenco (20A1-3), which controls transposition and infectivity of retrotransposongypsy (MDG4), is involved in the genetic control of behavior. In strains mutant for this locus, the male mating activity is decreased and the structure of courtship ritual is changed. To understand the mechanisms of these changes, it is important to study all behavioral stages in genetically identical strains. For this purpose, the normal allele of geneflamenco from the X chromosome of the wild-type strain Canton S was introduced into strain SS carrying flam MS. This offers new opportunities in studying the role of gene flamenco in the control of mating behavior in Drosophila.  相似文献   

20.

Background  

Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号