首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth-promoting and nutrient/mitogen-sensing pathways such as mTOR convert p21- and p16-induced arrest into senescence (geroconversion). We have recently demonstrated that hypoxia, especially near-anoxia, suppresses geroconversion. This gerosuppressive effect of hypoxia correlated with inhibition of the mTOR/S6K pathway but not with modulation of the LKB1/AMPK/eEF2 pathway. Here we further show that mTOR inhibition is required for gerosuppression by hypoxia, at least in some cellular models, because depletion of TSC2 abolished mTOR inhibition and gerosupression by hypoxia. Also, in two cancer cell lines resistant to inhibition of mTOR by both p53 and hypoxia, hypoxia did not suppress geroconversion. Therefore, the effects of hypoxia on the oxygen-sensing mTOR pathway and geroconversion are cell type-specific. We also briefly discuss replicative senescence, organismal aging and free radical theory.  相似文献   

2.
When the cell cycle is arrested, even though growth-promoting pathways such as mTOR are still active, then cells senesce. For example, induction of either p21 or p16 arrests the cell cycle without inhibiting mTOR, which, in turn, converts p21/p16-induced arrest into senescence (geroconversion). Here we show that geroconversion is accompanied by dramatic accumulation of cyclin D1 followed by cyclin E and replicative stress. When p21 was switched off, senescent cells (despite their loss of proliferative potential) progressed through S phase, and levels of cyclins D1 and E dropped. Most cells entered mitosis and then died, either during mitotic arrest or after mitotic slippage, or underwent endoreduplication. Next, we investigated whether inhibition of mTOR would prevent accumulation of cyclins and loss of mitotic competence in p21-arrested cells. Both nutlin-3, which inhibits mTOR in these cells, and rapamycin suppressed geroconversion during p21-induced arrest, decelerated accumulation of cyclins D1 and E and decreased replicative stress. When p21 was switched off, cells successfully progressed through both S phase and mitosis. Also, senescent mouse embryonic fibroblasts (MEFs) overexpressed cyclin D1. After release from cell cycle arrest, senescent MEFs entered S phase but could not undergo mitosis and did not proliferate. We conclude that cellular senescence is characterized by futile hyper-mitogenic drive associated with mTOR-dependent mitotic incompetence.  相似文献   

3.
CDKN1A (p21) and CDKN2A (p16) inhibit CDK4/6, initiating senescence. According to our view on senescence, the role of p21 and p16 is to cause cell cycle arrest, whereas MTOR (mechanistic target of rapamycin) drives geroconversion to senescence. Recently we demonstrated that one of the markers of p21- and p16-initiated senescence is MEK-dependent hyper-elevation of cyclin D1. We noticed that a synthetic inhibitor of CDK 4/6 (PD0332991) also induced cyclin D1-positive senescence. We demonstrated that PD0332991 and p21 caused almost identical senescence phenotypes. p21, p16, and PD0332991 do not inhibit MTOR, and rapamycin decelerates geroconversion caused by all 3 molecules. Like p21, PD0332991 initiated senescence at any concentration that inhibited cell proliferation. This confirms the notion that a mere arrest in the presence of active MTOR may lead to senescence.  相似文献   

4.
Cellular senescence happens in 2 steps: cell cycle arrest followed, or sometimes preceded, by gerogenic conversion (geroconversion). Geroconvesrion is a form of growth, a futile growth during cell cycle arrest. It converts reversible arrest to irreversible senescence. Geroconversion is driven by growth-promoting, mitogen-/nutrient-sensing pathways such as mTOR. Geroconversion leads to hyper-secretory, hypertrophic and pro-inflammatory cellular phenotypes, hyperfunctions and malfunctions. On organismal level, geroconversion leads to age-related diseases and death. Rapamycin, a gerosuppressant, extends life span in diverse species from yeast to mammals. Stress–and oncogene-induced accelerated senescence, replicative senescence in vitro and life-long cellular aging in vivo all can be described by 2-step model.  相似文献   

5.
The TOR (target of rapamycin) pathway is involved in aging in diverse organisms from yeast to mammals. We have previously demonstrated in human and rodent cells that mTOR converts stress-induced cell cycle arrest to irreversible senescence (geroconversion), whereas rapamycin decelerates or suppresses geroconversion during cell cycle arrest. Here, we investigated whether rapamycin can suppress replicative senescence of rodent cells. Mouse embryonic fibroblasts (MEFs) gradually acquired senescent morphology and ceased proliferation. Rapamycin decreased cellular hypertrophy, and SA-beta-Gal staining otherwise developed by 4-6 passages, but it blocked cell proliferation, masking its effects on replicative lifespan. We determined that rapamycin inhibited pS6 at 100-300 pM and inhibited proliferation with IC50 around 30 pM. At 30 pM, rapamycin partially suppressed senescence. However, the gerosuppressive effect was balanced by the cytostatic effect, making it difficult to suppress senescence without causing quiescence. We also investigated rat embryonic fibroblasts (REFs), which exhibited markers of senescence at passage 7, yet were able to slowly proliferate until 12–14 passages. REFs grew in size, acquired a large, flat cell morphology, SA-beta-Gal staining and components of DNA damage response (DDR), in particular, γH2AX/53BP1 foci. Incubation of REFs with rapamycin (from passage 7 to passage 10) allowed REFs to overcome the replicative senescence crisis. Following rapamycin treatment and removal, a fraction of proliferating REFs gradually increased and senescent phenotype disappeared completely by passage 24.  相似文献   

6.
When the cell cycle becomes arrested, MTOR (mechanistic Target of Rapamycin) converts reversible arrest into senescence (geroconversion). Hyperexpression of cyclin D1 is a universal marker of senescence along with hypertrophy, beta-Gal staining and loss of replicative/regenerative potential (RP), namely, the ability to restart proliferation when the cell cycle is released. Inhibition of MTOR decelerates geroconversion, although only partially decreases cyclin D1. Here we show that in p21- and p16-induced senescence, inhibitors of mitogen-activated/extracellular signal-regulated kinase (MEK) (U0126, PD184352 and siRNA) completely prevented cyclin D1 accumulation, making it undetectable. We also used MEL10 cells in which MEK inhibitors do not inhibit MTOR. In such cells, U0126 by itself induced senescence that was remarkably cyclin D1 negative. In contrast, inhibition of cyclin-dependent kinase (CDK) 4/6 by PD0332991 caused cyclin D1-positive senescence in MEL10 cells. Both types of senescence were suppressed by rapamycin, converting it into reversible arrest. We confirmed that the inhibitor of CDK4/6 caused cyclin D1 positive senescence in normal RPE cells, whereas U0126 prevented cyclin D1 expression. Elimination of cyclin D1 by siRNA did not prevent other markers of senescence that are consistent with the lack of its effect on MTOR. Our data confirmed that a mere inhibition of the cell cycle was sufficient to cause senescence, providing MTOR was active, and inhibition of MEK partially inhibited MTOR in a cell-type-dependent manner. Second, hallmarks of senescence may be dissociated, and hyperelevated cyclin D1, a marker of hyperactivation of senescent cells, did not necessarily determine other markers of senescence. Third, inhibition of MEK was sufficient to eliminate cyclin D1, regardless of MTOR.  相似文献   

7.
Markers of cellular senescence depend in part on the MTOR (mechanistic target of rapamycin) pathway. MTOR participates in geroconversion, a conversion from reversible cell cycle arrest to irreversible senescence. Recently we demonstrated that hyper-induction of cyclin D1 during geroconversion was mostly dependent on MEK, whereas rapamycin only partially inhibited cyclin D1 accumulation. Here we show that, while not affecting cyclin D1, siRNA for p70S6K partially prevented loss of RP (replicative/regenerative potential) during p21-induced cell cycle arrest. Similarly, an inhibitor of p70 S6 kinase (PF-4708671) partially inhibited phosphorylation of S6 and preserved RP, while only marginally prevented cyclin D1 induction. Thus S6K and MEK play different roles in geroconversion.  相似文献   

8.
9.
Hypoxia-induced energy stress regulates mRNA translation and cell growth   总被引:10,自引:0,他引:10  
Oxygen (O2) deprivation, or hypoxia, has profound effects on cell metabolism and growth. Cells can adapt to low O2 in part through activation of hypoxia-inducible factor (HIF). We report here that hypoxia inhibits mRNA translation by suppressing multiple key regulators, including eIF2alpha, eEF2, and the mammalian target of rapamycin (mTOR) effectors 4EBP1, p70S6K, and rpS6, independent of HIF. Hypoxia results in energy starvation and activation of the AMPK/TSC2/Rheb/mTOR pathway. Hypoxic AMP-activated protein kinase (AMPK) activation also leads to eEF2 inhibition. Moreover, hypoxic effects on cellular bioenergetics and mTOR inhibition increase over time. Mutation of the TSC2 tumor suppressor gene confers a growth advantage to cells by repressing hypoxic mTOR inhibition and hypoxia-induced G1 arrest. Together, eIF2alpha, eEF2, and mTOR inhibition represent important HIF-independent mechanisms of energy conservation that promote survival under low O2 conditions.  相似文献   

10.
In contrast to cell types in which exposure to hypoxia causes a general reduction of metabolic activity, a remarkable feature of pulmonary artery adventitial fibroblasts is their ability to proliferate in response to hypoxia. Previous studies have suggested that ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are activated by hypoxia and play a role in a variety of cell responses. However, the pathways involved in mediating hypoxia-induced proliferation are largely unknown. Using pharmacological inhibitors, we established that PI3K-Akt, mTOR-p70 ribosomal protein S6 kinase (p70S6K), and EKR1/2 signaling pathways play a critical role in hypoxia-induced adventitial fibroblast proliferation. We found that exposure of serum-starved fibroblasts to 3% O2 resulted in a time-dependent activation of PI3K and transient phosphorylation of Akt. However, activation of PI3K was not required for activation of ERK1/2, implying a parallel involvement of these pathways in the proliferative response of fibroblasts to hypoxia. We found that hypoxia induced significant increases in mTOR, p70S6K, 4E-BP1, and S6 ribosomal protein phosphorylation, as well as dramatic increases in p70S6K activity. The activation of p70S6K/S6 pathway was sensitive to inhibition by rapamycin and LY294002, indicating that mTOR and PI3K/Akt are upstream signaling regulators. However, the magnitude of hypoxia-induced p70S6K activity and phosphorylation suggests involvement of additional signaling pathways. Thus our data demonstrate that hypoxia-induced adventitial fibroblast proliferation requires activation and interaction of PI3K, Akt, mTOR, p70S6K, and ERK1/2 and provide evidence for hypoxic regulation of protein translational pathways in cells exhibiting the capability to proliferate under hypoxic conditions.  相似文献   

11.
Cell cycle arrest coupled with hyper-active mTOR leads to cellular senescence. While arresting cell cycle, high levels of p53 can inhibit mTOR (in some cell lines), thus causing reversible quiescence instead of senescence. Nutlin-3a-induced p53 inhibited mTOR and thus caused quiescence in WI-38 cells. In contrast, while arresting cell cycle, the DNA-damaging drug doxorubicin (DOX) did not inhibit mTOR and caused senescence. Super-induction of p53 by either nutlin-3a or high concentrations of DOX (high-DOX) prevented low-DOX-induced senescence, converting it into quiescence. This explains why in order to cause senescence, DNA damaging drugs must be used at low concentrations, which arrest cell cycle but do not induce p53 at levels sufficient to suppress mTOR. Noteworthy, very prolonged treatment with nutlin-3a also caused senescence preventable by rapamycin. In RPE cells, low concentrations of nutlin-3a caused a semi-senescent morphology. Higher concentrations of nutlin-3a inhibited mTOR and caused quiescent morphology. We conclude that low p53 levels during prolonged cell cycle arrest tend to cause senescence, whereas high levels of p53 tend to cause either quiescence or cell death.  相似文献   

12.
Cancer cells in solid tumors are challenged by various microenvironmental stresses, including hypoxia, and cancer cells in hypoxic regions are resistant to current cancer therapies. To investigate the mechanism of resistance to hypoxia in cancer cells, we examined mouse Lewis lung carcinoma (LLC) cells, which died due to necrosis at high density under hypoxic but not under normoxic conditions. Levels of mammalian target of rapamycin (mTOR), a central regulator of cellular energy, are reported to be suppressed in hypoxia. We found that phosphorylation of two molecules downstream to it, ribosomal p70 S6 kinase (S6K) and ribosomal protein S6, was markedly suppressed by hypoxia. Overexpression of the active form of S6K increased the sensitivity of LLC cells to hypoxia. On the other hand, inhibition of PI3K or mTOR dramatically reduced hypoxia-induced cell death under hypoxic conditions. Under hypoxic conditions, blockade of the PI3K or mTOR pathway increased levels of intracellular ATP and delayed decreases in pH and glucose level in culture medium, without affecting the cell cycle.  相似文献   

13.
The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1-/- cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1-/- cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.  相似文献   

14.
15.
Despite intensive study, the mechanisms regulating activation of mTOR and the consequences of that activation in the ischemic heart remain unclear. This is particularly true for the setting of ischemia/reperfusion (I/R) injury. In a mouse model of I/R injury, we observed robust mTOR activation, and its inhibition by rapamycin increased injury. Consistent with the in-vivo findings, mTOR activation was also protective in isolated cardiomyocytes exposed to two models of I/R. Moreover, we identify a novel oxidant stress-activated pathway regulating mTOR that is critically dependent on p38-MAPK and Akt. This novel p38-regulated pathway signals downstream through REDD1, Tsc2, and 14-3-3 proteins to activate mTOR and is independent of AMPK. The protective role of p38/Akt and mTOR following oxidant stress is a general phenomenon since we observed it in a wide variety of cell types. Thus we have identified a novel protective pathway in the cardiomyocyte involving p38-mediated mTOR activation. Furthermore, the p38-dependent protective pathway might be able to be selectively modulated to enhance cardio-protection while not interfering with the inhibition of the better-known detrimental p38-dependent pathways.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is a central controller of cell growth, and it regulates translation, cell size, cell viability, and cell morphology. mTOR integrates a wide range of extracellular and intracellular signals, including growth factors, nutrients, energy levels, and stress conditions. Rheb, a Ras-related small GTPase, is a key upstream activator of mTOR. In this study, we found that Bnip3, a hypoxia-inducible Bcl-2 homology 3 domain-containing protein, directly binds Rheb and inhibits the mTOR pathway. Bnip3 decreases Rheb GTP levels in a manner depending on the binding to Rheb and the presence of the N-terminal domain. Both knockdown and overexpression experiments show that Bnip3 plays an important role in mTOR inactivation in response to hypoxia. Moreover, Bnip3 inhibits cell growth in vivo by suppressing the mTOR pathway. These observations demonstrate that Bnip3 mediates the inhibition of the mTOR pathway in response to hypoxia.  相似文献   

17.
Less information is available concerning the molecular mechanisms of cell survival after hypoxia in hepatocytes. Therefore, this study examined the effect of hypoxia on DNA synthesis and its related signal cascades in primary cultured chicken hepatocytes. Hypoxia increased [3H] thymidine incorporation, which was increased significantly after 0-24 h of hypoxic exposure. Indeed, the percentage of cell population in the S phase was increased in hypoxia condition. However, the release of LDH indicating cellular injury was not changed under hypoxic conditions. Hypoxia increased Ca2+ uptake and PKC translocation from the cytosol to the membrane fraction. Among the PKC isoforms, hypoxia stimulated the translocation of PKC alpha and epsilon. Hypoxia also phosphorylated the p38 and p44/42 mitogen-activated protein kinases (MAPKs), which were blocked by the inhibition of PKC. On the other hand, hypoxia increased Akt and mTOR phosphorylation, which was blocked in the absence of intra/extracellular Ca2+. The inhibition of PKC/MAPKs or PI3K/Akt pathway blocked the hypoxia-induced [3H] thymidine incorporation. However, hypoxia-induced Ca2+ uptake and PKC translocation was not influenced by LY 294002 or Akt inhibitor and hypoxia-induced MAPKs phosphorylation was not changed by rapamycin. In addition, LY 294002 or Akt inhibitor has no effect on the phosphorylation of MAPKs. It suggests that there is no direct interaction between the two pathways, which cooperatively mediated cell cycle progression to hypoxia in chicken hepatocytes. Hypoxia also increased the level of the cell cycle regulatory proteins [cyclin D(1), cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4] and p-RB protein but decreased the p21 and p27 expression levels, which were blocked by inhibitors of upstream signal molecules. In conclusion, short time exposure to hypoxia increases DNA synthesis in primary cultured chicken hepatocytes through cooperation of Ca2+/PKC, p38 MAPK, p44/42 MAPKs, and PI3K/Akt pathways.  相似文献   

18.
Altered molecular responses to insulin and growth factors (GF) are responsible for late‐life shortening diseases such as type‐2 diabetes mellitus (T2DM) and cancers. We have built a network of the signaling pathways that control S‐phase entry and a specific type of senescence called geroconversion. We have translated this network into a Boolean model to study possible cell phenotype outcomes under diverse molecular signaling conditions. In the context of insulin resistance, the model was able to reproduce the variations of the senescence level observed in tissues related to T2DM's main morbidity and mortality. Furthermore, by calibrating the pharmacodynamics of mTOR inhibitors, we have been able to reproduce the dose‐dependent effect of rapamycin on liver degeneration and lifespan expansion in wild‐type and HER2–neu mice. Using the model, we have finally performed an in silico prospective screen of the risk–benefit ratio of rapamycin dosage for healthy lifespan expansion strategies. We present here a comprehensive prognostic and predictive systems biology tool for human aging.  相似文献   

19.
20.
Hypoxia triggers a reversible inhibition of protein synthesis thought to be important for energy conservation in O2-deficient environments. The mammalian target of rapamycin (mTOR) pathway integrates multiple environmental cues to regulate translation in response to nutrient availability and stress, suggesting it as a candidate for O2 regulation. We show here that hypoxia rapidly and reversibly triggers hypophosphorylation of mTOR and its effectors 4E-BP1, p70S6K, rpS6, and eukaryotic initiation factor 4G. Hypoxic regulation of these translational control proteins is dominant to activation via multiple distinct signaling pathways such as insulin, amino acids, phorbol esters, and serum and is independent of Akt/protein kinase B and AMP-activated protein kinase phosphorylation, ATP levels, ATP:ADP ratios, and hypoxia-inducible factor-1 (HIF-1). Finally, hypoxia appears to repress phosphorylation of translational control proteins in a manner analogous to rapamycin and independent of phosphatase 2A (PP2A) activity. These data demonstrate a new mode of regulation of the mTOR pathway and position this pathway as a powerful point of control by O2 of cellular metabolism and energetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号