首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.

Results

Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167).

Conclusion

Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/gb-2014-15-8-r70) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.

Background

The aim of our work was to identify the genes specifically altered in pancreatic adenocarcinoma and especially those that are altered early in cancer development.

Methodology/Principal Findings

Gene copy number was systematically assessed with an ultra-high resolution CGH oligonucleotide microarray in DNA from samples of pancreatic cancer. Several new cancer-associated variations were observed. In this work we focused on one of them, involving the reg4 gene. Gene copy number gain of the reg4 gene was confirmed by qPCR in 14 cancer samples. It was also found with increased copy number in most PanIN3 samples. The relationship betweena gain in reg4 gene copy number and cancer development was investigated on the human pancreatic cancer cell line Mia-PaCa2 xenografted under the skin of nude mice. When cells were transfected with a vector allowing reg4 expression, they generated tumors almost twice larger in size. In addition, these tumors were more resistant to gemcitabine treatment than control tumors. Interestingly, weekly intraperitoneal administration of a monoclonal antibody to reg4 halved the size of tumors generated by Mia-PaCa2 cells, suggesting that the antibody interfered with a paracrine/autocrine mechanism involving reg4 and stimulating cancer progression. The addition of gemcitabine resulted in further reduction, tumors becoming 5 times smaller than control. Exposure to reg4 antibody resulted in a significant decrease in intra-tumor levels of pAkt, Bcl-xL, Bcl-2, survivin and cyclin D1.

Conclusions/Significance

It was concluded that adjuvant therapies targeting reg4 could improve the standard treatment of pancreatic cancer with gemcitabine.  相似文献   

6.
Cancer is a highly heterogeneous disease in terms of the genetic profile and the response to therapeutics. An early identification of a genomic marker in drug discovery may help select patients that would respond to treatment in clinical trials. Here we suggest coupling compound screening with comparative genomic hybridization analysis of the model systems for early discovery of genomic biomarkers. A Bcl-2 antagonist, ABT-737, has recently been discovered and shown to induce regression of solid tumors, but its activity is limited to a fraction of small-cell lung carcinoma (SCLC) models tested. We used comparative genomic hybridization on high-density single-nucleotide polymorphism genotyping arrays to carry out a genome-wide analysis of 23 SCLC cell lines sensitive and resistant to ABT-737. The screen revealed a number of novel recurrent gene copy number abnormalities, which were also found in an independent data set of 19 SCLC tumors and confirmed by real-time quantitative PCR. A previously unknown amplification was identified on 18q and associated with the sensitivity of SCLC cell lines to ABT-737 and another Bcl-2 antagonist. The region of gain contains Bcl-2 and NOXA, two apoptosis-related genes. Expression microarray profiling showed that the genes residing in the amplified region of 18q are also overexpressed in the sensitive lines relative to the resistant lines. Fluorescence in situ hybridization analysis of tumors revealed that Bcl-2 gain is a frequent event in SCLC. Our findings suggest that 18q21-23 copy number will be a clinically relevant predictor for sensitivity of SCLC to Bcl-2 family inhibitors. The 18q21-23 genomic marker may have a broader application in cancer because Bcl-2 is associated with apoptosis evasion and chemoresistance.  相似文献   

7.
Gain at chromosome 3q25-q26 has been reported to commonly occur in prostate cancer. To map the 3q25-q26 amplification unit and to identify the candidate genes of amplification, we did fluorescence in situ hybridization and quantitative real-time PCR for gene copy number and mRNA expression measurements in prostate cancer cell lines and prostate cancer samples from radical prostatectomy specimens. The minimal overlapping region of DNA copy number gains in the cell lines could be narrowed down to 700 kb at 3q26.2. Of all positional and functional candidates in this region, the gene TLOC1/SEC62 revealed the highest frequency (50%) of copy number gains in the prostate cancer samples and was found to be up-regulated at the mRNA level in all samples analyzed. TLOC1/Sec62 protein was also shown to be overexpressed by Western blot analysis. Intriguingly, the TLOC1/SEC62 gene copy number was increased in prostate tumors from patients who had a lower risk of and a longer time to progression following radical prostatectomy. These findings make TLOC1/SEC62 the best candidate within the 3q amplification unit in prostate cancer. TLOC1/Sec62 protein is a component of the endoplasmic reticulum protein translocation machinery, whose function during prostate carcinogenesis remains to be determined.  相似文献   

8.
Previous investigations of the pediatric soft tissue tumor alveolar rhabdomyosarcoma have identified a characteristic translocation t(2;13)(q35;q14). We have employed a physical mapping strategy to localize the site of this translocation breakpoint on chromosome 13. Using a panel of somatic cell hybrid and lymphoblast cell lines with deletions and unbalanced translocations involving chromosome 13, we have mapped numerous probes from the 13q12-q14 region and demonstrate that this region is divisible into five physical intervals. These probes were then mapped with respect to the t(2;13) rhabdomyosarcoma breakpoint by quantitative Southern blot analysis of an alveolar rhabdomyosarcoma cell line with two copies of the derivative chromosome 13 and one copy of the derivative chromosome 2. Our findings demonstrate that the t(2;13) breakpoint is localized within a map interval delimited by the proximal deletion breakpoints in lymphoblast lines GM01484 and GM07312. Furthermore, the breakpoint is most closely flanked by loci D13S29 and TUBBP2 within this map interval. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the alveolar rhabdomyosarcoma translocation. In addition, this physical map will permit rapid determination of the proximity of new cloned sequences to the translocation breakpoint.  相似文献   

9.
Established tumour cell lines are ubiquitous tools in research, but their representativity is often debated. One possible caveat is that many cell lines are derived from cells with genomic instability, potentially leading to genotype changes in vitro. We applied SNP-array analysis to an established tumour cell line (WiT49). Even though WiT49 exhibited chromosome segregation errors in 30% of cell divisions, only a single chromosome segment exhibited a shift in copy number after 20 population doublings in culture. In contrast, sub-populations derived from single cells expanded for an equal number of population doublings showed on average 5.8 and 8.9 altered segments compared to the original culture and to each other, respectively. Most copy number variants differentiating these single cell clones corresponded to pre-existing variations in the original culture. Furthermore, no sub-clonal variation was detected in any of the populations derived from single cells. This indicates that genetic bottlenecks resulting from population reduction poses a higher threat to genetic representativity than prolonged culture per se, even in cell lines with a high rate of genomic instability. Genetic bottlenecks should therefore be considered a potential caveat in all studies involving sub-cloning, transfection and other conditions leading to a temporary reduction in cell number.  相似文献   

10.
In order to identify small regions of the genome whose specific copy number alteration is associated with high genomic instability in the form of overall genome-wide copy number aberrations, we have analyzed array-based comparative genomic hybridization (aCGH) data from 33 sporadic colorectal carcinomas. Copy number changes of a small number of specific regions were significantly correlated with elevated overall amplifications and deletions scattered throughout the entire genome. One significant region at 9q34 includes the c-ABL gene. Another region spanning 22q11-q13 includes the breakpoint cluster region (BCR) of the Philadelphia chromosome. Coordinate 22q11-q13 alterations were observed in 9 of 11 tumors with the 9q34 alteration. Additional regions on 1q and 14q were associated with overall genome-wide copy number changes, while copy number aberrations on chromosome 7p, 7q, and 13q21.1-q31.3 were found associated with this instability only in tumors from patients with a smoking history. Our analysis demonstrates there are a small number of regions of the genome where gain or loss is commonly associated with a tumor's overall level of copy number aberrations. Our finding BCR and ABL located within two of the instability-associated regions, and the involvement of these two regions occurring coordinately, suggests a system akin to the BCR-ABL translocation of CML may be involved in genomic instability in about one-third of human colorectal carcinomas.  相似文献   

11.
The molecular events in chordoma pathogenesis have not been fully delineated, particularly with respect to copy number changes. Understanding copy number alterations in chordoma may reveal critical disease mechanisms that could be exploited for tumor classification and therapy. We report the copy number analysis of 21 sporadic chordomas using array comparative genomic hybridization (CGH). Recurrent copy changes were further evaluated with immunohistochemistry, methylation specific PCR, and quantitative real-time PCR. Similar to previous findings, large copy number losses, involving chromosomes 1p, 3, 4, 9, 10, 13, 14, and 18, were more common than copy number gains. Loss of CDKN2A with or without loss of CDKN2B on 9p21.3 was observed in 16/20 (80%) unique cases of which six (30%) showed homozygous deletions ranging from 76 kilobases to 4.7 megabases. One copy loss of the 10q23.31 region which encodes PTEN was found in 16/20 (80%) cases. Loss of CDKN2A and PTEN expression in the majority of cases was not attributed to promoter methylation. Our sporadic chordoma cases did not show hotspot point mutations in some common cancer gene targets. Moreover, most of these sporadic tumors are not associated with T (brachyury) duplication or amplification. Deficiency of CDKN2A and PTEN expression, although shared across many other different types of tumors, likely represents a key aspect of chordoma pathogenesis. Sporadic chordomas may rely on mechanisms other than copy number gain if they indeed exploit T/brachyury for proliferation.  相似文献   

12.
Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras(LA2) model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from Kras(LA2) mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the Kras(LA2) allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the Kras(LA2) model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain.  相似文献   

13.
Structural rearrangements involving chromosome band 2p21 characterize a cytogenetic subgroup of benign thyroid tumors. To narrow down the breakpoints of these aberrations, we established two cell lines from benign thyroid tumors showing translocations involving 2p21. These two cell lines and one additional primary tumor were used for FISH-studies with 18 BAC clones. All breakpoints were mapped to a cluster of about 450 kb.  相似文献   

14.
Z Zaprianov  K Christov 《Cytometry》1988,9(4):380-386
Light microscopy, image cytometry (ICM), and flow cytometry (FCM) were used to study the degree of differentiation, DNA content, and S-phase of astrocytomas and glioblastoma multiforme in 102 patients. The postoperative real survival time (RST) was also studied. Using ICM, 62 astrocytomas were investigated. Grade I astrocytomas were composed of DNA-diploid cell lines, while grade III and glioblastoma multiforme consisted predominantly of DNA-aneuploid lines. Moderately differentiated astrocytomas were divided as follows: 14 DNA-diploid and 18 DNA-aneuploid. Forty astrocytomas were studied by FCM. Using the DNA index (DI) value, cases with abnormal DNA cell lines were established in all astrocytomas, with their number increasing in grades II and III astrocytomas. FCM indicated the same subdivision of moderately differentiated astrocytomas: 12 with DNA-diploid and 12 with DNA-aneuploid stem lines. Patients with DNA-diploid cell lines in the astrocytomas and low S-fraction survived longer than patients with abnormal DNA cell populations and higher S-fraction. The results from this study indicate that, together with the degree of differentiation of astroglial tumors, the appearance of cell lines with abnormal DNA value and higher S-fractions also have prognostic value.  相似文献   

15.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

16.
The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MC-F10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different "immortalizing agents", oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor "oncogene and chromosome addiction", intra-/intertumor heterogeneity, and chromosome instability.  相似文献   

17.
Clonally derived recombinant cell lines are highly desired to achieve consistent production of recombinant biotherapeutics. Despite repeated rounds of cloning by limiting dilution or single cell cloning, the resulting cell lines have often been observed to diverge, becoming a heterogeneous population and losing productivity over long-term sub-culturing. To understand the underlying molecular mechanisms, we developed quantitative polymerase chain reaction (qPCR) assays for the analysis of transgene copy number distribution in single recombinant cells isolated from Chinese hamster ovary (CHO) cell lines. Single cells were obtained by fluorescence activated cell sorting (FACS) technology and lysed directly in 96-well plates. qPCR assays were then applied to analyze the quantity and distribution of transgenes in those single cells. Results revealed multiple types of transgene copy number distribution profiles from those clonally derived CHO cell lines. The cell lines that maintained productivity over time displayed relatively constant and homogeneous transgene copy number distributions; while most of those cell lines exhibiting a loss of productivity over time showed varying degrees of transgene copy number heterogeneity and distribution drift with passaging. Some cell lines showed the existence of a significant portion of cells lacking the transgenes (referred to as negative cells in this study) and the percentage of those negative cells increased with subsequent generations. Criteria based on transgene copy number distribution profiles were developed to assess cell line suitability for clinical applications, which include (i) percentage of negative cells; (ii) standard deviation of qPCR threshold cycle (C(t) ) value, a measure of population heterogeneity; (iii) mean C(t) changes during aging, a measure of population drift. By implementing these criteria, undesirable cell lines were eliminated for further clinical and commercial applications.  相似文献   

18.
The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MCF10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different “immortalizing agents”, oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor “oncogene and chromosome addiction”, intra-/intertumor heterogeneity, and chromosome instability.  相似文献   

19.
As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including POU class 5 homeobox 1 (OCT4) and sonic hedgehog (SHH). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号