首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidermal growth factor (EGF) family of tyrosine kinase receptors (ErbB1, -2, -3, and -4) and their ligands are involved in cell differentiation, proliferation, migration, and carcinogenesis. However, it has proven difficult to link a given ErbB receptor to a specific biological process since most cells express multiple ErbB members that heterodimerize, leading to receptor cross-activation. In this study, we utilize carcinoma cells depleted of ErbB2, but not other ErbB receptor members, to specifically examine the role of ErbB2 in carcinoma cell migration and invasion. Cells stimulated with EGF-related peptides show increased invasion of the extracellular matrix, whereas cells devoid of functional ErbB2 receptors do not. ErbB2 facilitates cell invasion through extracellular regulated kinase (ERK) activation and coupling of the adaptor proteins, p130CAS and c-CrkII, which regulate the actin-myosin cytoskeleton of migratory cells. Overexpression of ErbB2 in cells devoid of other ErbB receptor members is sufficient to promote ERK activation and CAS/Crk coupling, leading to cell migration. Thus, ErbB2 serves as a critical component that couples ErbB receptor tyrosine kinases to the migration/invasion machinery of carcinoma cells.  相似文献   

2.
Versican is a hyaluronan-binding, extracellular chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The short V3 isoform contains the G1 and G3 terminal domains of versican that may potentially interact directly or indirectly with the hyaluronan receptor CD44 and the EGFR, respectively. We have previously described that overexpression of V3 in MeWo human melanoma cells markedly reduces tumor cell growth in vitro and in vivo. In this study we have investigated the signaling mechanism of V3 by silencing the expression of CD44 in control and V3-expressing melanoma cells. Suppression of CD44 had the same effects on cell proliferation and cell migration than those provoked by V3 expression, suggesting that V3 acts through a CD44-mediated mechanism. Furthermore, CD44-dependent hyaluronan internalization was blocked by V3 expression and CD44 silencing, leading to an accumulation of this glycosaminoglycan in the pericellular matrix and to changes in cell migration on hyaluronan. Furthermore, ERK1/2 and p38 activation after EGF treatment were decreased in V3-expressing cells suggesting that V3 may also interact with the EGFR through its G3 domain. The existence of a EGFR/ErbB2 receptor complex able to interact with CD44 was identified in MeWo melanoma cells. V3 overexpression resulted in a reduced interaction between EGFR/ErbB2 and CD44 in response to EGF treatment. Our results indicate that the V3 isoform of versican interferes with CD44 and the CD44-EGFR/ErbB2 interaction, altering the signaling pathways, such as ERK1/2 and p38 MAPK, that regulate cell proliferation and migration.  相似文献   

3.
4.
Activation of the receptor tyrosine kinase ErbB4 leads to various cellular responses such as proliferation, survival, differentiation, and chemotaxis. Two pairs of naturally occurring ErbB4 isoforms differing in their juxtamembrane (JMa/JMb) and C termini (cyt1/cyt2) have been described. To examine the role of ErbB4 in neuron migration, we cloned and stably transfected each of the four ErbB4 isoforms in ST14A cells (a neural progenitor cell line derived from the striatum of embryonic day 14 rats) endogenously expressing the other members of the ErbB family: ErbB1, ErbB2, and ErbB3. Using immunoprecipitation assays, we showed that the neuregulin-1beta1 (NRG1beta1) stimulus induced ErbB4 tyrosine phosphorylation and phosphatidylinositol 3-kinase (PI3K) recruitment and activation (as demonstrated by Akt phosphorylation) either directly (ErbB4 cyt1 isoform) or indirectly (ErbB4 cyt2 isoform). We examined the ability of the four ErbB4 isoforms to induce chemotaxis and cell proliferation in response to NRG1beta1 stimulation. Using migration assays, we observed that only ErbB4-expressing cells stimulated with NRG1beta1 showed a significant increase in migration, whereas the growth rate remained unchanged. Additional assays showed that inhibition of PI3K (but not of phospholipase Cgamma) dramatically reduced migratory activity. Our data show that ErbB4 signaling via PI3K activation plays a fundamental role in controlling NRG1beta1-induced migration.  相似文献   

5.
A well-coordinated interaction between extracellular signals and intracellular response forms the basis of life within multicellular organisms, with growth factors playing a crucial role in these interactions. Discoveries in recent years have shown that components of the Epidermal Growth Factor (EGF) signaling system have frequently been used by cancer cells to autonomously provide survival and proliferation signals. The main focus of this review is the ErbB epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases including ErbB1/EGFR, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4 as therapeutic targets. Since the ErbB receptor family regulates cell proliferation through the Ras-mitogen-activated protein kinase (RAS/MAPK) pathway, and cell survival and transformation through the phosphatidylinositol 3-kinase (PI3K/AKT) pathway, pharmacological targeting of these pathways is also discussed. We will also address the clinical studies that have been conducted to evaluate antibody-based therapies mostly on solid tumors and hematologic malignancies.  相似文献   

6.
Antibodies to the extracellular region of the ErbB receptors have played key roles in the development of a mechanistic understanding of this family of receptor tyrosine kinases. An extensively studied class of such antibodies inhibits activation of ErbB receptors, and these antibodies have been the focus of intense development as anti-cancer agents. In this review we consider the properties of ErbB receptors antibodies in light of the current structure-based model for ErbB receptor homo- and hetero-dimerization and activation. Crystal structures of the Fab fragments from five different inhibitory antibodies in complex with the extracellular regions of EGFR and ErbB2 have been determined. These structures highlight several different modes of binding and mechanisms of receptor inhibition. Information about antibody interactions with the structurally well-characterized soluble extracellular regions of ErbB receptors can be combined with the rich knowledge of the effects of these antibodies in cultured cells, and in vivo, to provide insights into the conformation and activation of ErbB receptors at the cell surface.  相似文献   

7.
The membrane mucin Muc4 is aberrantly expressed in numerous epithelial carcinomas and is currently used as a cancer diagnostic and prognostic tool. Muc4 can also potentiate signal transduction by modulating differential ErbB2 phosphorylation in the absence and in the presence of the ErbB3 soluble ligand heregulin (HRG‐β1). These features of Muc4 suggest that Muc4 is not merely a cancer marker, but an oncogenic factor with a unique‐binding/activation relationship with the receptor ErbB2. In the present study, we examined the signaling mechanisms that are associated with the Muc4–ErbB2 module by analyzing ErbB2 differential signaling in response to Muc4 expression. Our study was carried out in the A375 human melanoma and BT‐474 breast cancer cell lines as our model systems. Quantitative and comparative signaling modulations were evaluated by immunoblot using phospho‐specific antibodies, and densitometry analysis. Signaling complex components were identified by chemical cross‐linking, fractionation by gel filtration, immunoprecipitation, and immunoblotting. Activated downstream signaling pathways were analyzed by an antibody microarray screen and immunoblot analyses. Our results indicate that Muc4 modulates ErbB2 signaling potential significantly by stabilizing and directly interacting with the ErbB2–ErbB3 heterodimer. Further analyses indicate that Muc4 promotes ErbB2 autocatalysis, but it has no effect on ErbB3 phosphorylation, although the chemical cross‐linking data indicated that the signaling module is composed of Muc4, ErbB2, and ErbB3. Our microarray analysis indicates that Muc4 expression promotes cell migration by increasing the phosphorylation of the focal adhesion kinase and also through an increase in the levels of β‐catenin. J. Cell. Physiol. 224: 649–657, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The ErbB/HER receptor protein-tyrosine kinases and cancer   总被引:20,自引:0,他引:20  
The ErbB/HER protein-tyrosine kinases, which include the epidermal growth factor receptor, consist of a growth-factor-binding ectodomain, a single transmembrane segment, an intracellular protein-tyrosine kinase catalytic domain, and a tyrosine-containing cytoplasmic tail. The genes for the four members of this family, ErbB1-ErbB4, are found on different human chromosomes. Null mutations of any of the ErbB family members result in embryonic lethality. ErbB1 and ErbB2 are overexpressed in a wide variety of tumors including breast, colorectal, ovarian, and non-small cell lung cancers. The structures of the ectodomains of the ErbB receptors in their active and inactive conformation have shed light on the mechanism of receptor activation. The extracellular component of the ErbB proteins consists of domains I-IV. The activating growth factor, which binds to domains I and III, selects and stabilizes a conformation that allows a dimerization arm to extend from domain II to interact with an ErbB dimer partner. As a result of dimerization, protein kinase activation, trans-autophosphorylation, and initiation of signaling occur. The conversion of the inactive to active receptor involves a major rotation of the ectodomain. The ErbB receptors are targets for anticancer drugs. Two strategies for blocking the action of these proteins include antibodies directed against the ectodomain and drugs that inhibit protein-tyrosine kinase activity. A reversible ATP competitive inhibitor of ErbB1 (ZD1839, or Iressa) and an ErbB1 ectodomain directed antibody (IMC-C225, or Erbitux) have been approved for the treatment of non-small cell lung cancer and colorectal cancer, respectively. An ErbB2/HER2 ectodomain directed antibody (trastuzumab, or Herceptin) has also been approved for the treatment of breast cancer. Current research promises to produce additional agents based upon these approaches.  相似文献   

9.
Antibodies are the most rapidly expanding class of human therapeutics, including their use in cancer therapy. Monoclonal antibodies (mAb) against epidermal growth factor (EGF) receptor (EGFR) generated for cancer therapy block the binding of ligand to various EGFR-expressing human cancer cell lines and abolish ligand-dependent cell proliferation. In this study, we show that our mAb against EGFRs, designated as B4G7, exhibited a growth-stimulatory effect on various human cancer cell lines including PC-14, a non-small cell lung cancer cell line; although EGF exerted no growth-stimulatory activity toward these cell lines. Tyrosine phosphorylation of EGFRs occurred after treatment of PC-14 cells with B4G7 mAb, and it was completely inhibited by AG1478, a specific inhibitor of EGFR tyrosine kinase. However, this inhibitor did not affect the B4G7-stimulated cell growth, indicating that the growth stimulation by B4G7 mAb seems to be independent of the activation of EGFR tyrosine kinase. Immunoprecipitation with anti-ErbB3 antibody revealed that B4G7, but not EGF, stimulated heterodimerization between ErbB2 and ErbB3. ErbB3 was tyrosine phosphorylated in the presence of B4G7 but not in the presence of EGF. Further, the phosphorylation and B4G7-induced increase in cell growth were inhibited by AG825, a specific inhibitor of ErbB2. These results show that the ErbB2/ErbB3 dimer functions to promote cell growth in B4G7-treated cells. Changes in receptor-receptor interactions between ErbB family members after inhibition of one of its members are of potential importance in optimizing current EGFR family-directed therapies for cancer.  相似文献   

10.
The ErbB receptors and their role in cancer progression   总被引:27,自引:0,他引:27  
The involvement of the ErbB receptor tyrosine kinases in human cancer, as well as their essential role in a variety of physiological events during normal development, have motivated the interest in this receptor family. Approaches taken to block the activity of ErbB receptors in cancer cells have not only proven that they drive in vitro tumor cell proliferation, but have also become clinically relevant for targeting tumors with deregulated ErbB signaling. The mechanisms and downstream effectors through which the ErbB receptors influence processes linked to malignant development, including proliferation, cell survival, angiogenesis, migration, and invasion, are, however, only now becoming apparent. Our particular emphasis in this review will be on how ErbB receptors, in particular ErbB1 and ErbB2, contribute to processes linked to cancer progression. Importantly, in keeping with the emerging theme that ErbB receptors do not function in isolation, we will focus on receptor cooperativity, i.e., ErbB1 cooperates with other classes of receptors, and the ligand-less ErbB2 functions as a heterodimer with other ErbBs.  相似文献   

11.
ErbB4 is a member of the epidermal growth factor receptor(EGFR) family of tyrosine kinases, which includes EGFR/ErbB1, ErbB2/HER2/Neu, and ErbB3/HER3. These receptors play important roles both in normal development and in neoplasia. For example, deregulated signaling by ErbB1 and ErbB2 is observed in many human malignancies. In contrast, the roles that ErbB4 plays in tumorigenesis and normal biological processes have not been clearly defined. To identify the biological responses that are coupled to ErbB4, we have constructed three constitutively active ErbB4 mutants. Unlike a constitutively active ErbB2 mutant, the ErbB4 mutants are not coupled to increased cell proliferation, loss of contact inhibition, or anchorage independence in a rodent fibroblast cell line. This suggests that ErbB2 and ErbB4 may play distinct roles in tumorigenesis in vivo.  相似文献   

12.
Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1β. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.  相似文献   

13.
The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.  相似文献   

14.
Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases.  相似文献   

15.
Heregulins are a family of ligands for the ErbB3/ErbB4 receptors that play important roles in breast cancer cell proliferation and tumorigenesis. Limited information is available on the contribution of Rho GTPases to heregulin-mediated signaling. In breast cancer cells, heregulin beta1 (HRG) causes a strong activation of Rac; however, it does so with striking differences in kinetics compared to epidermal growth factor, which signals through ErbB1 (epidermal growth factor receptor [EGFR]). Using specific ErbB receptor inhibitors and depletion of receptors by RNA interference (RNAi), we established that, surprisingly, activation of Rac by HRG is mediated not only by ErbB3 and ErbB2 but also by transactivation of EGFR, and it is independent of ErbB4. Similar receptor requirements are observed for HRG-induced actin cytoskeleton reorganization and mitogenic activity via extracellular signal-regulated kinase (ERK). HRG-induced Rac activation was phosphatidylinositol 3-kinase dependent and Src independent. Furthermore, inactivation of Rac by expression of the Rac GTPase-activating protein beta2-chimerin inhibited HRG-induced ERK activation, mitogenicity, and migration in breast cancer cells. HRG mitogenic activity was also impaired by depletion of Rac1 using RNAi. Our studies established that Rac is a critical mediator of HRG mitogenic signaling in breast cancer cells and highlight additional levels of complexity for ErbB receptor coupling to downstream effectors that control aberrant proliferation and transformation.  相似文献   

16.
The ErbB family of receptor tyrosine kinases consists of four members: the epidermal growth factor receptor (EGFR/ErbB1), ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/HER4. ErbB2 is an "orphan" for which there is no naturally occurring, soluble ligand. ErbB3 lacks tyrosine kinase activity. Thus, we hypothesized that ErbB2 enhances ligand-induced ErbB family receptor signalling through mass action. In contrast, we hypothesized that ErbB3 reduces ligand-induced ErbB family receptor signalling by forming receptor heterodimers that cannot undergo bidirectional cross-phosphorylation. We tested these hypotheses using three cell lines that express equal levels of ErbB4. One expresses ErbB4 alone, the second expresses ErbB2 and ErbB4, and the third expresses ErbB3 and ErbB4. We treated the cells with the ErbB4 ligands betacellulin (BTC) and neuregulin1beta (NRG1 beta) and assayed ErbB4 tyrosine phosphorylation. ErbB2 and ErbB3 do not affect the amount of ligand-induced ErbB4 tyrosine phosphorylation. We will discuss these findings within the context of a model for ErbB receptor signalling.  相似文献   

17.
Neuregulin-1 (Nrg1) provides a key axonal signal that regulates Schwann cell proliferation, migration and myelination through binding to ErbB2/3 receptors. The analysis of a number of genetic models has unmasked fundamental mechanisms underlying the specificity of the Nrg1/ErbB signaling axis. Differential expression of Nrg1 isoforms, Nrg1 processing, and ErbB receptor localization and trafficking represent important regulatory themes in the control of Nrg1/ErbB function. Nrg1 binding to ErbB2/3 receptors results in the activation of intracellular signal transduction pathways that initiate changes in Schwann cell behavior. Here, we review data that has defined the role of key Nrg1/ErbB signaling components like Shp2, ERK1/2, FAK, Rac1/Cdc42 and calcineurin in development of the Schwann cell lineage in vivo. Many of these regulators receive converging signals from other cues that are provided by Notch, integrin or G-protein coupled receptors. Signaling by multiple extracellular factors may act as key modifiers and allow Schwann cells at different developmental stages to respond in distinct manners to the Nrg1/ErbB signal.  相似文献   

18.
Overexpression of the ErbB2 receptor tyrosine kinase is common in human cancers and is associated with an increased level of metastasis. To better understand the cellular signaling networks activated by ErbB2, a phosphoproteomic analysis of tyrosine-phosphorylated proteins was carried out in ErbB2-overexpressing breast and ovarian cancer cell lines. A total of 153 phosphorylation sites were assigned on 78 proteins. Treatment of cells with Herceptin, a monoclonal antibody that inhibits ErbB2 activity, significantly reduced the number of detectable protein phosphorylation sites, suggesting that many of these proteins participate in ErbB2-driven cell signaling. Of the 71 proteins that were differentially phosphorylated, only 13 were previously reported to directly associate with ErbB2. The differentially phosphorylated proteins included kinases, adaptor/docking proteins, proteins involved in cell proliferation and migration, and several uncharacterized RNA binding proteins. Selective depletion of some of these proteins, including RNA binding proteins SRRM2, SFRS1, SFRS9, and SFRS10, by siRNAs reduced the rate of migration of ErbB2-overexpressing ovarian cancer cells.  相似文献   

19.
Recent studies have suggested that the receptor for advanced glycation end products (RAGE) participates in melanoma progression by promoting tumor growth. However, the mechanisms of RAGE activation in melanoma tumors are not clearly understood. To get deeper insights into these mechanisms, we transfected a melanoma cell line, which was established from a human melanoma primary tumor, with RAGE, and studied the effect of RAGE overexpression on cell proliferation and migration in vitro. We observed that overexpression of RAGE in these cells not only resulted in significantly increased migration rates compared to control cells, but also in decreased proliferation rates (Meghnani et al., 2014).In the present study, we compared the growth of xenograft tumors established from RAGE overexpressing WM115 cells, to that of control cells. We observed that when implanted in mice, RAGE overexpressing cells generated tumors faster than control cells. Analysis of protein tumor extracts showed increased levels of the RAGE ligands S100B, S100A2, S100A4, S100A6 and S100A10 in RAGE overexpressing tumors compared to control tumors. We show that the tumor growth was significantly reduced when the mice were treated with anti-RAGE antibodies, suggesting that RAGE, and probably several S100 proteins, were involved in tumor growth. We further demonstrate that the anti-RAGE antibody treatment significantly enhanced the efficacy of the alkylating drug dacarbazine in reducing the growth rate of RAGE overexpressing tumors.  相似文献   

20.
Mechanism of activation and inhibition of the HER4/ErbB4 kinase   总被引:1,自引:0,他引:1  
HER4/ErbB4 is a ubiquitously expressed member of the EGF/ErbB family of receptor tyrosine kinases that is essential for normal development of the heart, nervous system, and mammary gland. We report here crystal structures of the ErbB4 kinase domain in active and lapatinib-inhibited forms. Active ErbB4 kinase adopts an asymmetric dimer conformation essentially identical to that observed to be important for activation of the EGF receptor/ErbB1 kinase. Mutagenesis studies of intact ErbB4 in Ba/F3 cells confirm the importance of this asymmetric dimer for activation of intact ErbB4. Lapatinib binds to an inactive form of the ErbB4 kinase in a mode equivalent to its interaction with the EGF receptor. All ErbB4 residues contacted by lapatinib are conserved in the EGF receptor and HER2/ErbB2, which lapatinib also targets. These results demonstrate that key elements of kinase activation and inhibition are conserved among ErbB family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号