首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Integrin-based adhesions promote cell survival as well as cell motility and invasion. We show here that the adhesion regulatory protein supervillin increases cell survival by decreasing levels of the tumor suppressor protein p53 and downstream target genes. RNAi-mediated knockdown of a new splice form of supervillin (isoform 4) or both isoforms 1 and 4 increases the amount of p53 and cell death, whereas p53 levels decrease after overexpression of either supervillin isoform. Cellular responses to DNA damage induced by etoposide or doxorubicin include down-regulation of endogenous supervillin coincident with increases in p53. In DNA-damaged supervillin knockdown cells, p53 knockdown or inhibition partially rescues the loss of cell metabolic activity, a measure of cell proliferation. Knockdown of the p53 deubiquitinating enzyme USP7/HAUSP also reverses the supervillin phenotype, blocking the increase in p53 levels seen after supervillin knockdown and accentuating the decrease in p53 levels triggered by supervillin overexpression. Conversely, supervillin overexpression decreases the association of USP7 and p53 and attenuates USP7-mediated p53 deubiquitination. USP7 binds directly to the supervillin N terminus and can deubiquitinate and stabilize supervillin. Supervillin also is stabilized by derivatization with the ubiquitin-like protein SUMO1. These results show that supervillin regulates cell survival through control of p53 levels and suggest that supervillin and its interaction partners at sites of cell-substrate adhesion constitute a locus for cross-talk between survival signaling and cell motility pathways.  相似文献   

11.
Two faces of p53: aging and tumor suppression   总被引:7,自引:1,他引:6  
The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity.  相似文献   

12.
13.
Junction-mediating and regulatory protein (JMY) is a p53 cofactor that was recently shown to nucleate actin assembly by a hybrid mechanism involving tandem actin monomer binding and Arp2/3 complex activation. However, the regulation and function of JMY remain largely uncharacterized. We examined the activity of JMY in vitro and in cells, its subcellular distribution, and its function in fibroblast and neuronal cell lines. We demonstrated that recombinant full-length JMY and its isolated WASP homology 2 domain, connector, and acidic region (WWWCA) have potent actin-nucleating and Arp2/3-activating abilities in vitro. In contrast, the activity of full-length JMY, but not the isolated WWWCA domain, is suppressed in cells. The WWWCA domain is sufficient to promote actin-based bead motility in cytoplasmic extracts, and this activity depends on its ability to activate the Arp2/3 complex. JMY is expressed at high levels in brain tissue, and in various cell lines JMY is predominantly cytoplasmic, with a minor fraction in the nucleus. Of interest, silencing JMY expression in neuronal cells results in a significant enhancement of the ability of these cells to form neurites, suggesting that JMY functions to suppress neurite formation. This function of JMY requires its actin-nucleating activity. These findings highlight a previously unrecognized function for JMY as a modulator of neuritogenesis.  相似文献   

14.
To understand the molecular mechanisms mediating apoptosis induction by a novel atypical retinoid, ST1926, the cellular response to drug treatment was investigated in IGROV-1 ovarian carcinoma cells carrying wild-type p53 and a cisplatin-resistant p53 mutant subline (IGROV-1/Pt1). Despite a similar extent of drug-induced DNA strand breaks, the level of apoptosis was substantially higher in p53 wild-type cells. p53 activation and early upregulation of p53-target genes were consistent with p53-dependent apoptosis in IGROV-1 cells. Stress-activated protein kinases were activated in both cell lines in response to ST1926. This event and activation of AP-1 were more pronounced in IGROV-1/Pt1 cells, in which the modulation of DNA repair-associated genes suggests an increased ability to repair DNA damage. Inhibition of JNK or p38 stimulated ST1926-induced apoptosis only in IGROV-1 cells, whereas inhibition of ERKs enhanced apoptosis in both the cell lines. Such a pattern of cellular response and modulation of genes implicated in DNA damage response supports that the genotoxic stress is a critical event mediating drug-induced apoptosis. The results are consistent with apoptosis induction through p53-dependent and -independent pathways, regulated by MAP kinases, which likely play a protective role.  相似文献   

15.
16.
Tumor suppressor p53 functions as a "guardian of the genome" to prevent cells from transformation. p53 is constitutively ubiquitinated and degradated in unstressed conditions, thereby suppressing the expression. However, cellular stimuli enable p53 to escape from the negative regulation, and then stably expressed p53 transactivates its target genes to induce cell cycle arrest, DNA repair, or apoptosis. Promoter preference of target genes is determined by modification status of p53. Because p53 has two critical roles in the decision of cell fate, stopping cell cycle to repair damaged DNA or induction of apoptotic cell death in response to DNA damage, elucidation of switching mechanisms on p53 functions is of particular importance. Here we review recent evidence how several post-translational modifications of p53 including methylation, phosphorylation, acetylation, and ubiquitination, affect the functions of p53 in response to cellular stress.  相似文献   

17.
The cellular function of p53 is complex. It is well known that p53 plays a key role in cellular response to DNA damage. Moreover, p53 was implicated in cellular senescence, and it was demonstrated that p53 undergoes modification in senescent cells. However, it is not known how these modifications affect the ability of senescent cells to respond to DNA damage. To address this question, we studied the responses of cultured young and old normal diploid human fibroblasts to a variety of genotoxic stresses. Young fibroblasts were able to undergo p53-dependent and p53-independent apoptosis. In contrast, senescent fibroblasts were unable to undergo p53-dependent apoptosis, whereas p53-independent apoptosis was only slightly reduced. Interestingly, instead of undergoing p53-dependent apoptosis, senescent fibroblasts underwent necrosis. Furthermore, we found that old cells were unable to stabilize p53 in response to DNA damage. Exogenous expression or stabilization of p53 with proteasome inhibitors in old fibroblasts restored their ability to undergo apoptosis. Our results suggest that stabilization of p53 in response to DNA damage is impaired in old fibroblasts, resulting in induction of necrosis. The role of this phenomenon in normal aging and anticancer therapy is discussed.  相似文献   

18.
19.
The importance of p53 in carcinogenesis stems from its central role in inducing cell cycle arrest or apoptosis in response to cellular stresses. We have identified a Drosophila homolog of p53 ("Dmp53"). Like mammalian p53, Dmp53 binds specifically to human p53 binding sites, and overexpression of Dmp53 induces apoptosis. Importantly, inhibition of Dmp53 function renders cells resistant to X ray-induced apoptosis, suggesting that Dmp53 is required for the apoptotic response to DNA damage. Unlike mammalian p53, Dmp53 appears unable to induce a G1 cell cycle block when overexpressed, and inhibition of Dmp53 activity does not affect X ray-induced cell cycle arrest. These data reveal an ancestral proapoptotic function for p53 and identify Drosophila as an ideal model system for elucidating the p53 apoptotic pathway(s) induced by DNA damage.  相似文献   

20.
Kennedy DR  Beerman TA 《Biochemistry》2006,45(11):3747-3754
Cells lacking the protein kinase ataxia telangiectasia mutated (ATM) have defective responses to DNA double-strand breaks (DSBs), including an inability to activate damage response proteins such as p53. However, we previously showed that cells lacking ATM robustly activate p53 in response to DNA strand breaks induced by the radiomimetic enediyne C-1027. To gain insight into the nature of C-1027-induced ATM-independent damage responses to DNA DSBs, we further examined the molecular mechanisms underlying the cellular response to this unique radiomimetic agent. Like ionizing radiation (IR) and other radiomimetics, breaks induced by C-1027 efficiently activate ATM by phosphorylation at Ser1981, yet unlike other radiomimetics and IR, DNA breaks induced by C-1027 result in normal phosphorylation of p53 and the cell cycle checkpoint kinases (Chk1 and Chk2) in the absence of ATM. In the presence of ATM, but under ATM and Rad3-related kinase (ATR) deficient conditions, C-1027 treatment resulted in a decrease in the level of Chk1 phosphorylation but not in the level of p53 and Chk2 phosphorylation. Only when cells were deficient in both ATM and ATR was there a reduction in the level of phosphorylation of each of these DNA damage response proteins. This reduction was also accompanied by an increased level of cell death in comparison to that of wild-type cells or cells lacking either ATM or ATR. Our findings demonstrate a unique cellular response to C-1027-induced DNA DSBs in that DNA damage response proteins are unaffected by the absence of ATM, as long as ATR is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号