首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.  相似文献   

2.
Bi X  Gong M  Srikanta D  Rong YS 《Genetics》2005,171(2):845-847
Others have suggested recently that the conserved ATM checkpoint kinase is minimally involved in controlling the G(2)/M checkpoint in Drosophila that serves to prevent mitotic entry in the presence of DNA damage. Our data indicate that both ATM and its regulator Mre11 are important for the checkpoint and that their roles become essential when animals are challenged with a low dose of X rays or when they have compromised checkpoint function of the ATM-related ATR kinase.  相似文献   

3.
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.  相似文献   

4.
5.
6.
Artemis is a phospho-protein that has been shown to have roles in V(D)J recombination, nonhomologous end-joining of double-strand breaks, and regulation of the DNA damage-induced G(2)/M cell cycle checkpoint. Here, we have identified four sites in Artemis that are phosphorylated in response to ionizing radiation (IR) and show that ATM is the major kinase responsible for these modifications. Two of the sites, S534 and S538, show rapid phosphorylation and dephosphorylation, and the other two sites, S516 and S645, exhibit rapid and prolonged phosphorylation. Mutation of both of these latter two residues results in defective recovery from the G(2)/M cell cycle checkpoint. This defective recovery is due to promotion by mutant Artemis of an enhanced interaction between unphosphorylated cyclin B and Cdk1, which in turn promotes inhibitory phosphorylation of Cdk1 by the Wee1 kinase. In addition, we show that mutant Artemis prevents Cdk1-cyclin B activation by causing its retention in the centrosome and inhibition of its nuclear import during prophase. These findings show that ATM regulates G(2)/M checkpoint recovery through inhibitory phosphorylations of Artemis that occur soon after DNA damage, thus setting a molecular switch that, hours later upon completion of DNA repair, allows activation of the Cdk1-cyclin B complex. These findings thus establish a novel function of Artemis as a regulator of the cell cycle in response to DNA damage.  相似文献   

7.
When cells are exposed to a dose of radiation large enough to cause chromosome aberrations, they become arrested at the G(2)/M checkpoint, facilitating DNA repair. Defects in checkpoint control genes can impart radiosensitivity. Arrest kinetics were monitored in mouse embryo fibroblasts at doses ranging from 10 mGy to 5.0 Gy of γ radiation over a time course of 0 to 12 h. We observe no significant checkpoint engagement at doses below 100 mGy. The checkpoint is only fully activated at doses where most of the cells are either bound for mitotic catastrophe or are reproductively dead. Atm null cells with ablated checkpoint function exhibited no robust arrest. Surprisingly, haploinsufficiency for ATM alone or in combination with other radioresistance genes did not alter checkpoint activation. We have shown previously that haploinsufficiency for several radioresistance genes imparts intermediate phenotypes for several end points including apoptosis, transformation and survival. These findings suggest that checkpoint control does not contribute toward these intermediate phenotypes and that different biological processes can be activated at high doses compared to low doses.  相似文献   

8.
To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main regulators of G2 checkpoint maintenance following DNA-damage.  相似文献   

9.
We have shown previously that SNM1A colocalizes with 53BP1 at sites of double-strand breaks (DSBs) induced by IR, and that these proteins interact with or without DNA damage. However, the role of SNM1A in the DNA damage response has not been elucidated. Here, we show that SNM1A is required for an efficient G1 checkpoint arrest after IR exposure. Interestingly, the localization of SNM1A to sites of DSBs does not require either 53BP1 or H2AX, nor does the localization of 53BP1 require SNM1A. However, the localization of SNM1A does require ATM. Furthermore, SNM1A is shown to be a phosphorylation substrate of ATM in vitro, and to interact with ATM in vivo particularly after exposure of cells to IR. In addition, in the absence of SNM1A the activation of the downstream ATM target p53 is reduced. These findings suggest that SNM1A acts with ATM to promote the G1 cell cycle checkpoint.  相似文献   

10.
Zinc has been shown to be required for the passage of cells through the mid-G1 phase of the cell cycle and for differentiation of myoblasts. However, it has been suggested that zinc has other roles during the cell cycle. The experiments reported here indicate that readily available zinc is not required for DNA synthesis per se but is needed for a process contemporaneous with the S phase and required for subsequent progress of the cells through G2 and mitosis. The G1 and S/G2 requirements for zinc showed virtually identical sensitivities to zinc deprivation. Each of the above requirements for zinc coincides with the induction of specific cyclin mRNAs, and the concentrations of these mRNAs have now been shown to decrease in the absence of adequate zinc. This is the first study to indicate a possible common factor underlying the requirement for available zinc during both cell replication and differentiation.  相似文献   

11.
Turning off the G2 DNA damage checkpoint   总被引:1,自引:0,他引:1  
  相似文献   

12.
Abraham RT 《Molecular cell》2005,17(2):163-164
Elegant studies in fission yeast by and in mammalian cells by offer new insights into the mechanism through which stress-induced p38 activation inhibits mitotic entry in eukaryotic cells.  相似文献   

13.
Yang C  Tang X  Guo X  Niikura Y  Kitagawa K  Cui K  Wong ST  Fu L  Xu B 《Molecular cell》2011,44(4):597-608
The ATM kinase plays a critical role in the maintenance of genetic stability. ATM is activated in response to DNA damage and is essential for cell-cycle checkpoints. Here, we report that ATM is activated in mitosis in the absence of DNA damage. We demonstrate that mitotic ATM activation is dependent on the Aurora-B kinase and that Aurora-B phosphorylates ATM on serine 1403. This phosphorylation event is required for mitotic ATM activation. Further, we show that loss of ATM function results in shortened mitotic timing and a defective spindle checkpoint, and that abrogation of ATM Ser1403 phosphorylation leads to this spindle checkpoint defect. We also demonstrate that mitotically activated ATM phosphorylates Bub1, a critical kinetochore protein, on Ser314. ATM-mediated Bub1 Ser314 phosphorylation is required for Bub1 activity and is essential for the activation of the spindle checkpoint. Collectively, our data highlight mechanisms of a critical function of ATM in mitosis.  相似文献   

14.
15.
16.
After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM‐/ATR‐dependent signaling that inhibits mitosis‐promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR‐dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET‐based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re‐activation. These phosphorylations are rapidly counteracted by the chromatin‐bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.  相似文献   

17.
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.  相似文献   

18.
DNA (deoxyribonucleic acid) signals that induce the G2 checkpoint response were examined using proliferative secondary cultures of diploid human fibroblasts. Treatments that generated DNA double-strand breaks (DSBs) directly were effective inducers of checkpoint response, generally producing >80% inhibition of mitosis (G2 delay) and the kinase activity of M-phase-promoting factor within 2 h of treatment. Effective inducers of G2 checkpoint response included γ-irradiation and the cancer chemotherapeutic drugs, bleomycin and etoposide. Treatments that produced DNA single-strand breaks, directly or indirectly through nucleotide excision repair, were not effective inducers of G2 delay. Ineffective treatments included incubation with camptothecin, an inhibitor of topoisomerase I (topo I), and irradiation with sublethal fluences of UVC, followed by incubation with aphidicolin. Transient severe inhibition of DNA synthesis with aphidicolin did not affect mitosis substantially, suggesting that the replication arrest input to the G2 checkpoint required more than brief inhibition of DNA synthesis. In contrast, moderate camptothecin-induced inhibition of DNA synthesis was associated with a strong inhibition of mitosis that developed 4–12 h after drug treatment. This result suggested that G2 delay was not expressed until the cells that were in S-phase at the time of treatment with camptothecin proceeded into G2. DNA damage was not necessary for induction of mitotic delay. An inhibitor of topoisomerase II (topo II), ICRF-193, which inhibits chromatid decatenation in G2 cells without damaging DNA, induced a severe inhibition of mitosis and M-phase-promoting factor kinase activity. The results suggest that DNA double-strand breaks and insufficiency of chromatid decatenation effectively induce the G2 checkpoint response, but DNA single-strand breaks do not.  相似文献   

19.
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.  相似文献   

20.
M-phase-promoting factor (MPF), a complex of cdc2 and a B-type cyclin, is a key regulator of the G2/M cell cycle transition. Cyclin B1 accumulates in the cytoplasm through S and G2 phases and translocates to the nucleus during prophase. We show here that cytoplasmic localization of cyclin B1 during interphase is directed by its nuclear export signal (NES)-dependent transport mechanism. Treatment of HeLa cells with leptomycin B (LMB), a specific inhibitor of the NES-dependent transport, resulted in nuclear accumulation of cyclin B1 in G2 phase. Disruption of an NES which has been identified in cyclin B1 here abolished the nuclear export of this protein, and consequently the NES-disrupted cyclin B1 when expressed in cells accumulated in the nucleus. Moreover, we show that expression of the NES-disrupted cyclin B1 or LMB treatment of the cells is able to override the DNA damage-induced G2 checkpoint when combined with caffeine treatment. These results suggest a role of nuclear exclusion of cyclin B1 in the DNA damage-induced G2 checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号