共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. We wished to determine if autophagic induction by Atg7 is sufficient to reduce misfolded protein and aggregate content in protein misfolding-stressed cardiomyocytes. We used loss- and gain-of-function approaches in cultured cardiomyocytes to determine the effects of ATG7 knockdown and Atg7 overexpression in protein conformation-based toxicity induced by expression of a mutant aB crystallin (CryAB (R120G) ) known to cause human heart disease. We show that Atg7 induces basal autophagy and rescues the CryAB accumulation of misfolded proteins and aggregates in cardiomyocytes. 相似文献
2.
Manish K. Gupta 《Autophagy》2016,12(11):2252-2253
Cardiac proteins are subject to continuous stress and these intrinsic and extrinsic factors, both physiological and pathological can lead to protein misfolding. If the protein quality control (PQC) pathways are in any way compromised or their activities diminished, intracellular aggregates can form and a proteotoxic environment is generated, which contributes to cardiac disease and heart failure. We studied the role that SUMO post-translational modification plays in a proteotoxic cardiac environment. SUMOylation can have an integral role in controlling flux through the ubiquitin-proteasome system, and expression of the SUMO (small ubiquitin-like modifier) E2 enzyme UBE2I/UBC9 improves cardiac PQC. Our data focus on using gain- and loss-of-function approaches to modify UBE2I levels and measure the effects on cardiomyocyte autophagic flux. UBE2I expression does have an impact on macroautophagy/autophagy as increased SUMOylation results in increased autophagy. We show that increased SUMOylation is cardioprotective and can decrease morbidity in proteotoxic cardiac disease. 相似文献
3.
Nutrient availability influences an organism's life history with profound effects on metabolism and lifespan. The association between a healthy lifespan and metabolism is incompletely understood, but a central factor is glucose metabolism. Although glucose is an important cellular energy source, glucose restriction is associated with extended lifespan in simple animals and a reduced incidence of age-dependent pathologies in humans. We report here that glucose enrichment delays mutant polyglutamine, TDP-43, FUS, and amyloid-β toxicity in Caenorhabditis elegans models of neurodegeneration by reducing protein misfolding. Dysregulated metabolism is common to neurodegeneration and we show that glucose enrichment is broadly protective against proteotoxicity. 相似文献
4.
Wu Jimin Deng Xiangning Gao Juan Gao Wei Xiao Han Wang Xinyu Zhang Youyi 《中国科学:生命科学英文版》2019,62(8):1038-1046
Macrophage migration inhibitory factor(MIF) is an inflammatory cytokine. It is elevated early in the blood of acute myocardial infarction patients. However, it is unclear whether and how MIF is released. This study investigated the cellular source and mechanism of MIF release from hearts. An ischemia-mimic treatment induced the secretion of MIF from neonatal rat cardiomyocytes but not from fibroblasts. The treatment did not cause significant leakage of lactate dehydrogenase, suggesting that ischemia induced the MIF secretion without causing severe cell damage. Plasma samples from patients with acute chest pain at the emergency department were collected for the detection of MIF. MIF levels in patients with acute coronary syndrome(ACS)increased early, when cardiac injury markers were not yet elevated, suggesting that ischemia can induce MIF secretion before the occurrence of severe myocardial damage. Serum-starvation caused MIF secretion from rat cardiomyocytes and Langendorffperfused rat hearts. The secretion was suppressed by the inhibition of autophagy by inhibitors or by silencing of Atg5. In conclusion, serum-starvation induces the secretion of MIF from cardiomyocytes via autophagy dependent pathway. Clarifying the mechanism of MIF secretion will be helpful for its application in the early diagnosis and treatment of ACS. 相似文献
5.
Heat shock, stress proteins, chaperones, and proteotoxicity 总被引:76,自引:0,他引:76
L E Hightower 《Cell》1991,66(2):191-197
6.
The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self‐association of disease proteins and determine whether they elicit a toxic or benign outcome. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 229–236, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
7.
8.
The insulin paradox: aging, proteotoxicity and neurodegeneration 总被引:2,自引:0,他引:2
Distinct human neurodegenerative diseases share remarkably similar temporal emergence patterns, even though different toxic proteins are involved in their onset. Typically, familial neurodegenerative diseases emerge during the fifth decade of life, whereas sporadic cases do not exhibit symptoms earlier than the seventh decade. Recently, mechanistic links between the aging process and toxic protein aggregation, a common hallmark of neurodegenerative diseases, have been revealed. The insulin/insulin-like growth factor 1 (IGF1) signalling pathway - a lifespan, metabolism and stress-resistance regulator - links neurodegeneration to the aging process. Thus, although a reduction of insulin signalling can result in diabetes, its reduction can also increase longevity and delay the onset of protein-aggregation-mediated toxicity. Here we review this apparent paradox and delineate the therapeutic potential of manipulating the insulin/IGF1 signalling pathway for the treatment of neurodegenerative diseases. 相似文献
9.
《Autophagy》2013,9(4):604-606
O-GlcNAcylation is an abundant post-translational modification implicated in human neurodegenerative diseases. We showed that loss-of-function of OGT (O-linked GlcNAc transferase) alleviated, while loss of OGA (O-GlcNAc selective β-N-acetyl-D-glucosaminidase) enhanced, the proteotoxicity of C. elegans neurodegenerative disease models including tauopathy, β-amyloid peptide and polyglutamine expansion. The O-GlcNAc cycling mutants act, in part, by altering insulin signaling, proteasome activity and autophagy. In mutants lacking either of these enzymes of O-GlcNAc cycling, there is a striking accumulation of GFP::LGG-1 (C. elegans homolog of Atg8 and LC3) and increased phosphatidylethanolamine (PE)-modified GFP::LGG-1 upon starvation. We speculate that O-GlcNAc cycling is a key nutrient-responsive regulator of autophagic flux acting at multiple levels including direct modification of BECN1 and BCL2. 相似文献
10.
11.
《Autophagy》2013,9(7):932-935
The heart is capable of robust structural remodeling, sometimes improving performance and sometimes leading to failure. Recent studies have uncovered a critical role for autophagy in disease-related remodeling of the cardiomyocyte. We have shown previously that hemodynamic load elicits a maladaptive autophagic response in cardiomyocytes which contributes to disease progression. In a recent study, we went on to demonstrate that protein aggregation is a proximal event triggering autophagic clearance mechanisms. The ubiquitin-proteasome-dependent pathways of protein clearance are similarly activated in parallel with processing of stress-induced protein aggregates into aggresomes and clearance through autophagy. These findings in the setting of pressure overload contrast with protein aggregation occurring in a model of protein chaperone malfunction in myocytes, where activation of autophagy is beneficial, antagonizing disease progression. Our findings situate heart disease stemming from environmental stress in the category of proteinopathy and raise important new questions regarding molecular events that elicit adaptive and maladaptive autophagy.Addendum to: Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, Miller FJ, Jr., Rothermel BA, Hill JA. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 2008;117:3070-8. 相似文献
12.
Tyler S. Crum Amanda M. Gleixner Jessica M. Posimo Daniel M. Mason Matthew T. Broeren Scott D. Heinemann Peter Wipf Jeffrey L. Brodsky Rehana K. Leak 《Journal of neurochemistry》2015,133(6):780-794
The olfactory bulb is one of the most vulnerable brain regions in age‐related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here, we describe age‐related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2–4 months. To model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro‐oxidant paraquat. Toxin‐induced increases were observed in Hsp70, Hsp25, and Hsp32. To determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells.
13.
The heart is capable of robust structural remodeling, sometimes improving performance and sometimes leading to failure. Recent studies have uncovered a critical role for autophagy in disease-related remodeling of the cardiomyocyte. We have shown previously that hemodynamic load elicits a maladaptive autophagic response in cardiomyocytes which contributes to disease progression. In a recent study, we went on to demonstrate that protein aggregation is a proximal event triggering autophagic clearance mechanisms. The ubiquitin-proteasome-dependent pathways of protein clearance are similarly activated in parallel with processing of stress-induced protein aggregates into aggresomes and clearance through autophagy. These findings in the setting of pressure overload contrast with protein aggregation occurring in a model of protein chaperone malfunction in myocytes, where activation of autophagy is beneficial, antagonizing disease progression. Our findings situate heart disease stemming from environmental stress in the category of proteinopathy and raise important new questions regarding molecular events that elicit adaptive and maladaptive autophagy. 相似文献
14.
Cristina González-Estévez Emili Saló 《Apoptosis : an international journal on programmed cell death》2010,15(3):279-292
Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme
environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink
from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic
model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma
are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again
made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These
cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future
maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed
by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent
approximately 20–30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate
in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt
their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety
of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and
tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the
subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current
understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in planarians. 相似文献
15.
Autophagy in plants and phytopathogens 总被引:1,自引:0,他引:1
Plants and plant-associated microorganisms including phytopathogens have to adapt to drastic changes in environmental conditions. Because of their immobility, plants must cope with various types of environmental stresses such as starvation, oxidative stress, drought stress, and invasion by phytopathogens during their differentiation, development, and aging processes. Here we briefly describe the early studies of plant autophagy, summarize recent studies on the molecular functions of ATG genes, and speculate on the role of autophagy in plants and phytopathogens. Autophagy regulates senescence and pathogen-induced cell death in plants, and autophagy and pexophagy play critical roles in differentiation and the invasion of host cells by phytopathogenic fungi. 相似文献
16.
《Autophagy》2013,9(12):1871-1872
Neurodegeneration is a prominent feature of lysosomal storage disorders (LSDs). Emerging data identify autophagy dysfunction in neurons as a major component of the phenotype. However, the autophagy pathway in the CNS has been studied predominantly in neurons, whereas in other cell types it has been largely unexplored. We studied the lysosome-autophagic pathway in astrocytes from a murine model of multiple sulfatase deficiency (MSD), a severe form of LSD. Similar to what was observed in neurons, we found that lysosomal storage in astrocytes impairs autophagosome maturation and this, in turn, has an impact upon the survival of cortical neurons and accounts for some of the neurological features found in MSD. Thus, our data indicate that lysosomal/autophagic dysfunction in astrocytes is an important component of neurodegeneration in LSDs. 相似文献
17.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2020,1867(3):118432
Autophagy (greek auto: self; phagein: eating) is a highly conserved process within eukaryotes that degrades long-lived proteins and organelles within lysosomes. Its accurate and constant operation in basal conditions ensures cellular homeostasis by degrading damaged cellular components and thereby acting not only as a quality control but as well as an energy supplier. An increasing body of evidence indicates a major role of autophagy in the regulation of cardiac homeostasis and function. In this review, we describe the different forms of mammalian autophagy, their regulations and monitoring with a specific emphasis on the heart. Furthermore, we address the role of autophagy in several forms of cardiomyopathy and the options for therapy. 相似文献
18.
Duszenko M Ginger ML Brennand A Gualdrón-López M Colombo MI Coombs GH Coppens I Jayabalasingham B Langsley G de Castro SL Menna-Barreto R Mottram JC Navarro M Rigden DJ Romano PS Stoka V Turk B Michels PA 《Autophagy》2011,7(2):127-158
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. 相似文献
19.
Kabakov AE Budagova KR Latchman DS Kampinga HH 《American journal of physiology. Cell physiology》2002,283(2):C521-C534
Rat H9c2 myoblasts were preconditioned by heat or metabolic stress followed by recovery under normal conditions. Cells were then subjected to severe ATP depletion, and stress-associated proteotoxicity was assessed on 1) the increase in a Triton X-100-insoluble component of total cellular protein and 2) the rate of inactivation and insolubilization of transfected luciferase with cytoplasmic or nuclear localization. Both heat and metabolic preconditioning elevated the intracellular heat shock protein 70 (HSP70) level and reduced cell death after sustained ATP depletion without affecting the rate and extent of ATP decrease. Each preconditioning attenuated the stress-induced insolubility among total cellular protein as well as the inactivation and insolubilization of cytoplasmic and nuclear luciferase. Transient overexpression of human HSP70 in cells also attenuated both the cytotoxic and proteotoxic effects of ATP depletion. Quercetin, a blocker of stress-responsive HSP expression, abolished the effects of stressful preconditioning but did not influence the effects of overexpressed HSP70. Analyses of the cellular fractions revealed that both the stress-preconditioned and HSP70-overexpressing cells retain the soluble pool of HSP70 longer during ATP depletion. Larger amounts of other proteins coimmunoprecipitated with excess HSP70 compared with control cells deprived of ATP. This is the first demonstration of positive correlation between chaperone activity within cells and their viability in the context of ischemia-like stress. 相似文献
20.
Efficient protein turnover is essential for the maintenance of cellular health. Here we review how autophagy has fundamental functions in cellular homeostasis and possible uses as a therapeutic strategy for neurodegenerative diseases associated with intracytosolic aggregate formation, like Huntington's disease (HD). Drugs like rapamycin, that induce autophagy, increase the clearance of mutant huntingtin fragments and ameliorate the pathology in cell and animal models of HD and related conditions. In Drosophila, the beneficial effects of rapamycin in diseases related to HD are autophagy-dependent. We will also discuss the importance of autophagy in early stages of development and its possible contribution as a secondary disease mechanism in forms of fronto-temporal dementias, motor neuron disease, and lysosomal storage disorders. 相似文献