首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generated homozygous knockin ES cells expressing a form of 3-phosphoinositide-dependent protein kinase-1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5-tris-phosphate (PtdIns(3,4,5)P3) binding, without affecting catalytic activity. In the knockin cells, protein kinase B (PKB) was not activated by IGF1, whereas ribosomal S6 kinase (RSK) was activated normally, indicating that PtdIns(3,4,5)P3 binding to PDK1 is required for PKB but not RSK activation. Interestingly, amino acids and Rheb, but not IGF1, activated S6K in the knockin cells, supporting the idea that PtdIns(3,4,5)P3 stimulates S6K through PKB-mediated activation of Rheb. Employing PDK1 knockin cells in which either the PtdIns(3,4,5)P3 binding or substrate-docking 'PIF pocket' was disrupted, we established the roles that these domains play in regulating phosphorylation and stabilisation of protein kinase C isoforms. Moreover, mouse PDK1 knockin embryos in which either the PH domain or PIF pocket was disrupted died displaying differing phenotypes between E10.5 and E11.5. Although PDK1 plays roles in regulating cell size, cells derived from PH domain or PIF pocket knockin embryos were of normal size. These experiments establish the roles of the PDK1 regulatory domains and illustrate the power of knockin technology to probe the physiological function of protein-lipid and protein-protein interactions.  相似文献   

2.
The products of PI 3-kinase activation, PtdIns(3,4,5)P3 and its immediate breakdown product PtdIns(3,4)P2, trigger physiological processes, by interacting with proteins possessing pleckstrin homology (PH) domains. One of the best characterized PtdIns(3,4,5)P3/PtdIns(3,4)P2 effector proteins is protein kinase B (PKB), also known as Akt. PKB possesses a PH domain located at its N terminus, and this domain binds specifically to PtdIns(3,4,5)P3 and PtdIns(3,4)P2 with similar affinity. Following activation of PI 3-kinase, PKB is recruited to the plasma membrane by virtue of its interaction with PtdIns(3,4,5)P3/PtdIns(3,4)P2. PKB is then activated by the 3-phosphoinositide-dependent pro-tein kinase-1 (PDK1), which like PKB, possesses a PtdIns(3,4,5)P3/PtdIns(3,4)P2 binding PH domain. Here, we describe the high-resolution crystal structure of the isolated PH domain of PKB(alpha) in complex with the head group of PtdIns(3,4,5)P3. The head group has a significantly different orientation and location compared to other Ins(1,3,4,5)P4 binding PH domains. Mutagenesis of the basic residues that form ionic interactions with the D3 and D4 phosphate groups reduces or abolishes the ability of PKB to interact with PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The D5 phosphate faces the solvent and forms no significant interactions with any residue on the PH domain, and this explains why PKB interacts with similar affinity with both PtdIns(3,4,5)P3 and PtdIns(3,4)P2.  相似文献   

3.
PDK1, the master regulator of AGC kinase signal transduction   总被引:2,自引:0,他引:2  
The interaction of insulin and growth factors with their receptors on the outside surface of a cell, leads to the activation of phosphatidylinositol 3-kinase (PI 3-kinase) and generation of the phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) second messenger at the inner surface of the cell membrane. One of the most studied signalling events controlled by PtdIns(3,4,5)P3, comprises the activation of a group of AGC family protein kinases, including isoforms of protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), serum- and glucocorticoid-induced protein kinase (SGK) and protein kinase C (PKC), which play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation and survival. Here, we review recent biochemical, genetic and structural studies on the 3-phosphoinositide-dependent protein kinase-1 (PDK1), which phosphorylates and activates the AGC kinase members regulated by PI 3-kinase. We also discuss whether inhibitors of PDK1 might have chemotherapeutic potential in the treatment of cancers in which the PDK1-regulated AGC kinases are constitutively activated.  相似文献   

4.
The PI3K/PDK1/PKB signaling pathway plays essential roles in regulating neuronal survival, differentiation and plasticity in response to neurotrophic factors, neurotransmitters and ion channels. Both PDK1 and PKB can interact at the plasma membrane with a phosphoinositide synthesized by PI3K, the second messenger PtdIns(3,4,5)P3, enabling PDK1 to phosphorylate and activate PKB. In the PDK1 K465E knock-in mice expressing a mutant form of PDK1 incapable of phosphoinositide binding, activation of PKB was markedly affected, but not totally abolished. It has been recently proposed that in the absence of PtdIns(3,4,5)P3 binding, PDK1 can still moderately activate PKB due to a docking site-mediated interaction of these 2 kinases. A recent report has uncovered that in the PDK1 K465E mice neurons, a PKB signal threshold was sufficient to support neuronal survival responses, whereas neuritogenesis, neuronal polarization and axon outgrowth were severely impaired. We propose here that the low-efficiency mechanism of PKB activation observed in the PDK1 K465E mice might represent the ancestral mechanism responsible for the essential functions of this pathway, while the phosphoinositide-dependent activation should be considered an evolutionary innovation that enabled the acquisition of novel functions.  相似文献   

5.
Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/-) mice   总被引:2,自引:0,他引:2  
Many cancers possess elevated levels of PtdIns(3,4,5)P(3), the second messenger that induces activation of the protein kinases PKB/Akt and S6K and thereby stimulates cell proliferation, growth, and survival. The importance of this pathway in tumorigenesis has been highlighted by the finding that PTEN, the lipid phosphatase that breaks down PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), is frequently mutated in human cancer. Cells lacking PTEN possess elevated levels of PtdIns(3,4,5)P(3), PKB, and S6K activity and heterozygous PTEN(+/-) mice develop a variety of tumors. Knockout of PKBalpha in PTEN-deficient cells reduces aggressive growth and promotes apoptosis, whereas treatment of PTEN(+/-) mice with rapamycin, an inhibitor of the activation of S6K, reduces neoplasia. We explored the importance of PDK1, the protein kinase that activates PKB and S6K, in mediating tumorigenesis caused by the deletion of PTEN. We demonstrate that reducing the expression of PDK1 in PTEN(+/-) mice, markedly protects these animals from developing a wide range of tumors. Our findings provide genetic evidence that PDK1 is a key effector in mediating neoplasia resulting from loss of PTEN and also validate PDK1 as a promising anticancer target for the prevention of tumors that possess elevated PKB and S6K activity.  相似文献   

6.
3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P3 second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation.  相似文献   

7.
Diabetes affects 3% of the European population and 140 million people worldwide, and is largely a disease of insulin resistance in which the tissues fail to respond to this hormone. This emphasizes the importance of understanding how insulin signals to the cell's interior. We have recently dissected a protein kinase cascade that is triggered by the formation of the insulin 'second messenger' phosphatidylinositide (3,4,5) trisphosphate (PtdIns (3,4,5)P3) and which appears to mediate many of the metabolic actions of this hormone. The first enzyme in the cascade is termed 3-phosphoinositide-dependent protein kinase-1 (PDK1), because it only activates protein kinase B (PKB), the next enzyme in the pathway, in the presence of PtdIns (3,4,5)P3. PKB then inactivates glycogen synthase kinase-3 (GSK3). PDK1, PKB and GSK3 regulate many physiological events by phosphorylating a variety of intracellular proteins. In addition, PKB plays an important role in mediating protection against apoptosis by survival factors, such as insulin-like growth factor-1.  相似文献   

8.
Phosphoinositide-dependent protein kinase-1 (PDK1) is a recently identified kinase that phosphorylates and activates protein kinase B (PKB). Activation of PKB by insulin is linked to its translocation from the cytosol to the plasma membrane. However, no data are available yet concerning the localization of PDK1 in insulin-sensitive tissue. Using isolated adipocytes, we studied the effect of insulin and of an insulin-mimicking agent peroxovanadate on the subcellular localization of PDK1. In unstimulated adipocytes, overexpressed PDK1 was mostly cytosolic with a low amount associated to membranes. Peroxovanadate stimulation induced the redistribution of PDK1 to the membranes while insulin was without effect. This peroxovanadate effect was dependent on phosphatidylinositol 3,4,5 triphosphate [PtdIns(3,4,5)P3] production as inhibition of PtdIns 3-kinase by wortmannin or deletion of the PH domain of PDK1 prevented the peroxovanadate-induced translocation of PDK1. Further, peroxovanadate-treatment induced a tyrosine phosphorylation of PDK1 which was wortmannin insensitive and did not require the PH domain of PDK1. An inhibitor of Src kinase (PP2) decreased the peroxovanadate-induced PDK1 tyrosine phosphorylation and overexpression of v-Src stimulated this phosphorylation. Mutation of tyrosine 373 of PDK1 abolished the v-Src induced PDK1 tyrosine phosphorylation and partially reduced the effect of peroxovanadate. Our findings suggest that PDK1 could be a substrate for tyrosine kinases and identify Src kinase as one of the tyrosine kinases able to phosphorylate PDK1.  相似文献   

9.
BACKGROUND: Protein kinase B (PKB) is activated by phosphorylation of Thr308 and of Ser473. Thr308 is phosphorylated by the 3-phosphoinositide-dependent protein kinase-1 (PDK1) but the identity of the kinase that phosphorylates Ser473 (provisionally termed PDK2) is unknown. RESULTS: The kinase domain of PDK1 interacts with a region of protein kinase C-related kinase-2 (PRK2), termed the PDK1-interacting fragment (PIF). PIF is situated carboxy-terminal to the kinase domain of PRK2, and contains a consensus motif for phosphorylation by PDK2 similar to that found in PKBalpha, except that the residue equivalent to Ser473 is aspartic acid. Mutation of any of the conserved residues in the PDK2 motif of PIF prevented interaction of PIF with PDK1. Remarkably, interaction of PDK1 with PIF, or with a synthetic peptide encompassing the PDK2 consensus sequence of PIF, converted PDK1 from an enzyme that could phosphorylate only Thr308 of PKBalpha to one that phosphorylates both Thr308 and Ser473 of PKBalpha in a manner dependent on phosphatidylinositol (3,4,5) trisphosphate (PtdIns(3,4,5)P3). Furthermore, the interaction of PIF with PDK1 converted the PDK1 from a form that is not directly activated by PtdIns(3,4,5)P3 to a form that is activated threefold by PtdIns(3,4,5)P3. We have partially purified a kinase from brain extract that phosphorylates Ser473 of PKBalpha in a PtdIns(3,4,5)P3-dependent manner and that is immunoprecipitated with PDK1 antibodies. CONCLUSIONS: PDK1 and PDK2 might be the same enzyme, the substrate specificity and activity of PDK1 being regulated through its interaction with another protein(s). PRK2 is a probable substrate for PDK1.  相似文献   

10.
3磷酸肌醇依赖性蛋白激酶1(3phosphoinositidedependentproteinkinase1,PDK1PDPK1)是蛋白激酶B(proteinkinaseB,PKBCAKT)的上游激酶,通过与3,4,5三磷酸磷脂酰肌醇[PtdIns(3,4,5)P3]作用激活相邻的PKB分子.同时,PDK1被称为AGC激酶的掌管者(master),能够激活包含PKB在内的一系列的AGC激酶家族成员.PDK1磷酸化这些激酶的保守区域Tloop区,使它们充分激活,从而调节细胞代谢,生长,扩散,生存,抗凋亡等诸多生理过程.本文就PDK1调节AGC激酶的活性,与功能上命名的PDK2的关系,PDK1分子自身的调节,PH结构域对自身活性及AGC激酶活性的影响,PDK1定位以及作为一个新药物靶标等方面做了综述.  相似文献   

11.
Harris TK 《IUBMB life》2003,55(3):117-126
Growth factor binding events to receptor tyrosine kinases result in activation of phosphatidylinositol 3-kinase (PI3K), and activated PI3K generates the membrane-bound second messengers phosphatidylinositol 3,4-diphosphate [PI(3,4)P2] and PI(3,4,5)P3, which mediate membrane translocation of the phosphoinositide-dependent kinase-1 (PDK1) and protein kinase B (PKB, also known as Akt). In addition to the kinase domain, PDK1 and PKB contain a pleckstrin homology (PH) domain that binds to the second messenger, resulting in the phosphorylation and activation of PKB by PDK1. Recent evidence indicates that constitutive activation of PKB contributes to cancer progression by promoting proliferation and increased cell survival. The indicating of PDK1 and PKB as primary targets for discovery of anticancer drugs, together with the observations that both PDK1 and PKB contain small-molecule regulatory binding sites that may be in proximity to the kinase active site, make PDK1 and PKB ideal targets for the development of new strategies to structure-based drug design. While X-ray structures have been reported for the kinase domains of PDK1 and PKB, no suitable crystals have been obtained for either PDK1 or PKB with their PH domains intact. In this regard, a novel structure-based strategy is proposed, which utilizes segmental isotopic labeling of the PH domain in combination with site-directed spin labeling of the kinase active site. Then, long-range distance restraints between the 15N-labeled backbone amide groups of the PH domain and the unpaired electron of the active site spin label can be determined from magnetic resonance studies of the enhancement effect that the paramagnetic spin label has on the nuclear relaxation rates of the amide protons. The determination of the structure and position of the PH domain with respect to the known X-ray structure of the kinase active site could be useful in the rational design of potent and selective inhibitors of PDK1 and PKB by 'linking' the free energies of binding of substrate (ATP) analogs with analogs of the inositol polar head group of the phospholipid second messenger. The combined use of X-ray crystallography, segmental isotopic and spin labeling, and magnetic resonance studies can be further extended to the study of other dynamic multidomain proteins and targets for structure-based drug design.  相似文献   

12.
3-phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates and activates many kinases belonging to the AGC subfamily. PDK1 possesses a C-terminal pleckstrin homology (PH) domain that interacts with PtdIns(3,4,5)P3/PtdIns(3,4)P2 and with lower affinity to PtdIns(4,5)P2. We describe the crystal structure of the PDK1 PH domain, in the absence and presence of PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4. The structures reveal a 'budded' PH domain fold, possessing an N-terminal extension forming an integral part of the overall fold, and display an unusually spacious ligand-binding site. Mutagenesis and lipid-binding studies were used to define the contribution of residues involved in phosphoinositide binding. Using a novel quantitative binding assay, we found that Ins(1,3,4,5,6)P5 and InsP6, which are present at micromolar levels in the cytosol, interact with full-length PDK1 with nanomolar affinities. Utilising the isolated PDK1 PH domain, which has reduced affinity for Ins(1,3,4,5,6)P5/InsP6, we perform localisation studies that suggest that these inositol phosphates serve to anchor a portion of cellular PDK1 in the cytosol, where it could activate its substrates such as p70 S6-kinase and p90 ribosomal S6 kinase that do not interact with phosphoinositides.  相似文献   

13.
The serine-threonine protein kinases PDK1 and PKB each contain a pleckstrin homology (PH) domain that binds the membrane-bound phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] second messenger and is required for PDK1-catalyzed phosphorylation and activation of PKB. While X-ray structures have been reported for the individual regulatory PH and catalytic kinase domain constructs of both PDK1 and PKB, diffraction quality crystals of full length constructs have yet to be obtained, likely due to conformational heterogeneity. In developing alternative approaches to understanding the potential role of conformational dynamics in regulating PKB phosphorylation by PDK1, an efficient in vitro method for protein trans-splicing was developed, which utilizes the N- and C-terminal split inteins of the gene dnaE from Nostoc punctiforme [(N)NpuDnaE] and Synechocystis sp. strain PCC6803 [(C)SspDnaE], respectively. For conjugating the regulatory PH domain to the catalytic kinase domain of PDK1, the recombinant trans-splicing fusion constructs KINASE(AEY)-(N)NpuDnaE-His6 and GST-His6-(C)SspDnaE-(CMN)PH were designed, PCR assembled, overexpressed, and affinity purified. The cross-reacting (N)NpuDnaE and (C)SspDnaE inteins generated full length spliced-PDK1 with kobs = (2.8 +/- 0.3) x 10(-5) s(-1) and with < or =5% of any competing trans-cleavage reactions. Spliced-PDK1 was efficiently purified to > or =95% homogeneity from the reaction mixture by subsequent His6 affinity and ion exchange chromatography steps. In vitro kinase assays and phosphopeptide mapping studies confirmed that spliced-PDK1 retained the ability to colocalize and selectively phosphorylate Thr-309 of PKBbeta in a PI(3,4,5)P3-dependent manner. The high-level production and reconstitution of functional spliced-PDK1 establishes the feasibility of incorporating domain-specific biophysical probes for spectroscopic studies of regulatory PH domain mediated catalytic specificity.  相似文献   

14.
15.
A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.  相似文献   

16.
GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P(3)), with K(D) values of 0.05, 1.6 and 1.0 micrometer for GRP1, ARNO, and cytohesin-1, respectively. However, the GRP1 PH domain was unique among these proteins in its striking selectivity for PtdIns(3,4, 5)P(3) versus phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)), for which it exhibits about 650-fold lower apparent affinity. Addition of a glycine to the Gly(274)-Gly(275) motif in GRP1 greatly increased its binding affinity for PtdIns(4,5)P(2) with little effect on its binding to PtdIns(3,4,5)P(3), while deletion of a single glycine in the corresponding triglycine motif of the ARNO PH domain markedly reduced its binding affinity for PtdIns(4,5)P(2) but not for PtdIns(3,4,5)P(3). In intact cells, the hemagglutinin epitope-tagged PH domain of GRP1 was recruited to ruffles in the cell surface in response to insulin, as were full-length GRP1 and cytohesin-1, but the PH domain of cytohesin-1 was not. These data indicate that the unique diglycine motif in the GRP1 PH domain, as opposed to the triglycine in ARNO and cytohesin-1, directs its remarkable PtdIns(3,4,5)P(3) binding selectivity.  相似文献   

17.
We studied the spatiotemporal regulation of Akt (also called protein kinase B), phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] by using probes based on the principle of fluorescence resonance energy transfer. On epidermal growth factor (EGF) stimulation, the amount of PtdIns(3,4,5)P3 was increased diffusely in the plasma membrane, whereas that of PtdIns(3,4)P2 was increased more in the nascent lamellipodia than in the plasma membrane of the central region. The distribution and time course of Akt activation were similar to that of increased PtdIns(3,4)P2 levels, which were most prominent in the nascent lamellipodia. Moreover, we found that upon EGF stimulation 3-phosphoinositide-dependent protein kinase-1 (PDK1) was also recruited to nascent lamellipodia in an Akt-dependent manner. Because PDK1 is known to activate Ral GTPase and because Ral is required for EGF-induced lamellipodial protrusion, we speculated that the PDK1-Akt complex may be indispensable for the induction of lamellipodia. In agreement with this idea, EGF-induced lamellipodia formation was promoted by the overexpression of Akt and inhibited by an Akt inhibitor or a Ral-binding domain of Sec5. These results identified the Akt-PDK1 complex as an upstream positive regulator of Ral GTPase in the induction of lamellipodial protrusion.  相似文献   

18.
PDK1 activates a group of kinases, including protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-induced protein kinase (SGK), that mediate many of the effects of insulin as well as other agonists. PDK1 interacts with phosphoinositides through a pleckstrin homology (PH) domain. To study the role of this interaction, we generated knock-in mice expressing a mutant of PDK1 incapable of binding phosphoinositides. The knock-in mice are significantly small, insulin resistant, and hyperinsulinemic. Activation of PKB is markedly reduced in knock-in mice as a result of lower phosphorylation of PKB at Thr308, the residue phosphorylated by PDK1. This results in the inhibition of the downstream mTOR complex 1 and S6K1 signaling pathways. In contrast, activation of SGK1 or p90 ribosomal S6 kinase or stimulation of S6K1 induced by feeding is unaffected by the PDK1 PH domain mutation. These observations establish the importance of the PDK1-phosphoinositide interaction in enabling PKB to be efficiently activated with an animal model. Our findings reveal how reduced activation of PKB isoforms impinges on downstream signaling pathways, causing diminution of size as well as insulin resistance.  相似文献   

19.
Mechanism of membrane binding of the phospholipase D1 PX domain   总被引:3,自引:0,他引:3  
Mammalian phospholipases D (PLD), which catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid (PA), have been implicated in various cell signaling and vesicle trafficking processes. Mammalian PLD1 contains two different membrane-targeting domains, pleckstrin homology and Phox homology (PX) domains, but the precise roles of these domains in the membrane binding and activation of PLD1 are still unclear. To elucidate the role of the PX domain in PLD1 activation, we constructed a structural model of the PX domain by homology modeling and measured the membrane binding of this domain and selected mutants by surface plasmon resonance analysis. The PLD1 PX domain was found to have high phosphoinositide specificity, i.e. phosphatidylinositol 3,4,5-trisphosphate (PtdIns-(3,4,5)P(3)) > phosphatidylinositol 3-phosphate > phosphatidylinositol 5-phosphate > other phosphoinositides. The PtdIns(3,4,5)P(3) binding was facilitated by the cationic residues (Lys(119), Lys(121), and Arg(179)) in the putative binding pocket. Consistent with the model structure that suggests the presence of a second lipid-binding pocket, vesicle binding studies indicated that the PLD1 PX domain could also bind with moderate affinity to PA, phosphatidylserine, and other anionic lipids, which were mediated by a cluster of cationic residues in the secondary binding site. Simultaneous occupancy of both binding pockets synergistically increases membrane affinity of the PX domain. Electrostatic potential calculations suggest that a highly positive potential near the secondary binding site may facilitate the initial adsorption of the domain to the anionic membrane, which is followed by the binding of PtdIns(3,4,5)P(3) to its binding pocket. Collectively, our results suggest that the interaction of the PLD1 PX domain with PtdIns(3,4,5)P(3) and/or PA (or phosphatidylserine) may be an important factor in the spatiotemporal regulation and activation of PLD1.  相似文献   

20.
Insulin sensitivity is critically dependent on the activity of PI3K (phosphoinositide 3-kinase) and generation of the PtdIns(3,4,5)P(3) second messenger. PtdIns(3,4,5)P(3) can be broken down to PtdIns(3,4)P(2) through the action of the SHIPs (Src-homology-2-domain-containing inositol phosphatases). As PtdIns(3,4)P(2) levels peak after those of PtdIns(3,4,5)P(3), it has been proposed that PtdIns(3,4)P(2) controls a negative-feedback loop that down-regulates the insulin and PI3K network. Previously, we identified two related adaptor proteins termed TAPP [tandem PH (pleckstrin homology)-domain-containing protein] 1 and TAPP2 that specifically bind to PtdIns(3,4)P(2) through their C-terminal PH domain. To determine whether TAPP1 and TAPP2 play a role in regulating insulin sensitivity, we generated knock-in mice that express normal endogenous levels of mutant TAPP1 and TAPP2 that are incapable of binding PtdIns(3,4)P(2). These homozygous TAPP1(R211L/R211L) TAPP2(R218L/R218L) double knock-in mice are viable and exhibit significantly enhanced activation of Akt, a key downstream mediator of insulin signalling. Consistent with increased PI3K and Akt activity, the double knock-in mice display enhanced whole body insulin sensitivity and disposal of glucose uptake into muscle tissues. We also generated wild-type and double TAPP1(R211L/R211L) TAPP2(R218L/R218L) knock-in embryonic fibroblasts and found that insulin triggered enhanced production of PtdIns(3,4,5)P(3) and Akt activity in the double knock-in fibroblasts. These observations provide the first genetic evidence to support the notion that binding of TAPP1 and TAPP2 adap-tors to PtdIns(3,4)P(2) function as negative regulators of the insulin and PI3K signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号