首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr(9) antibodies showed that the level of Tyr(9) phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr(9), distinct from Tyr(373/376), is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr(9) phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.  相似文献   

2.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

3.
The multi-site phosphorylation of the protein kinase C (PKC) superfamily plays an important role in the regulation of these enzymes. One of the key phosphorylation sites required for the activation of all PKC isoforms lies in the T-loop of the kinase domain. Recent in vitro and transfection experiments indicate that phosphorylation of this residue can be mediated by the 3-phosphoinositide-dependent protein kinase-1 (PDK1). In this study, we demonstrate that in embryonic stem (ES) cells lacking PDK1 (PDK1-/- cells), the intracellular levels of endogenously expressed PKCalpha, PKCbetaI, PKCgamma, PKCdelta, PKCepsilon, and PKC-related kinase-1 (PRK1) are vastly reduced compared to control ES cells (PDK1+/+ cells). The levels of PKCzeta and PRK2 protein are only moderately reduced in the PDK1-/- ES cells. We demonstrate that in contrast to PKCzeta expressed PDK1+/+ ES cells, PKCzeta in ES cells lacking PDK1 is not phosphorylated at its T-loop residue. This provides the first genetic evidence that PKCzeta is a physiological substrate for PDK1. In contrast, PRK2 is still partially phosphorylated at its T-loop in PDK1-/- cells, indicating the existence of a PDK1-independent mechanism for the phosphorylation of PRK2 at this residue.  相似文献   

4.
In this study, we show that phosphorylated 3-phosphoinositide-dependent kinase 1 (PDK1) phosphorylates p21-activated kinase 1 (PAK1) in the presence of sphingosine. We identify threonine 423, a conserved threonine in the activation loop of kinase subdomain VIII, as the PDK1 phosphorylation site on PAK1. Threonine 423 is a previously identified PAK1 autophosphorylation site that lies within a PAK consensus phosphorylation sequence. After pretreatment with phosphatases, autophosphorylation of PAK1 occurred at all major sites except threonine 423. A phosphothreonine 423-specific antibody detected phosphorylation of recombinant, catalytically inactive PAK1 after incubation with wild-type PAK1, indicating phosphorylation of threonine 423 occurs by an intermolecular mechanism. The biological significance of PDK1 phosphorylation of PAK1 at threonine 423 in vitro is supported by the observation that these two proteins interact in vivo and that PDK1-phosphorylated PAK1 has an increased activity toward substrate. An increase of phosphorylation of catalytically inactive PAK1 was observed in COS-7 cells expressing wild-type, but not catalytically inactive, PDK1 upon elevation of intracellular sphingosine levels. PDK1 phosphorylation of PAK1 was not blocked by pretreatment with wortmannin or when PDK1 was mutated to prevent phosphatidylinositol binding, indicating this process is independent of phosphatidylinositol 3-kinase activity. The data presented here provide evidence for a novel mechanism for PAK1 regulation and activation.  相似文献   

5.
刘革修 《生命科学》2005,17(5):387-391
PDK1可调节AGC激酶家族中一些重要蛋白激酶。这些激酶包括蛋白激酶B(PKB/Akt)、p70核小体S6激酶(p70 ribosomal S6 kinase,S6K)、血清和糖皮质激素诱导激酶(SGK)和蛋白激酶C(PKC)等,它们在细胞代谢、生长、增殖和存活等生理过程中具有重要作用。因此,了解PDK1生物学特性可能对其调节的AGC激酶持续活化的癌症治疗具有一定推动作用。本文对PDK1的结构、遗传和生化特点进行了综述。  相似文献   

6.
Insulin stimulation of Glut 4 translocation requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase) but the downstream pathway remains ill-defined. We demonstrated that the overexpression of PDK1 (3-phosphoinositide-dependent protein kinase 1), a downstream effector of PI 3-kinase, stimulated Glut 4 translocation in adipocytes. This effect does not require the PH domain of PDK1, but expression of the pleckstrin homology domain-deleted PDK1 inhibits the effect of insulin, but not okadaic acid, on Glut 4 translocation. These results support a role of the PDK1 pathway in the transmission of insulin signal to Glut translocation.  相似文献   

7.
Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.  相似文献   

8.
The metabolic actions of insulin are transduced through the phosphatidylinositol 3-kinase pathway. A critical component of this pathway is 3-phosphoinositide-dependent kinase-1 (PDK-1), a PH domain-containing enzyme that catalyzes the activating phosphorylation for many AGC kinases, including Akt and protein kinase C isozymes. We used a directed proteomics-based approach to identify the adaptor protein Grb14, which binds the insulin receptor through an SH2 domain, as a novel PDK-1 binding partner. Interaction of these two proteins is constitutive and mediated by a PDK-1 binding motif on Grb14. Disruption of this motif by point mutation or deletion of the Grb14 SH2 domain prevents the insulin-triggered membrane translocation of PDK-1. The interaction of PDK-1 with Grb14 facilitates Akt function: disruption of the interaction by overexpression of a construct of Grb14 mutated in the PDK-1 binding motif significantly decreases insulin-dependent activation of Akt. Thus, Grb14 serves as an adaptor protein to recruit PDK-1 to activated insulin receptor, thus promoting Akt phosphorylation and transduction of the insulin signal.  相似文献   

9.
The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.  相似文献   

10.
Activation of mouse 3-phosphoinositide-dependent protein kinase-1 (mPDK1) requires phosphorylation at a conserved serine residue, Ser244, in the activation loop. However, the mechanism by which mPDK1 is phosphorylated at this site remains unclear. We have found that kinase-defective mPDK1 (mPDK1KD), but not a kinase-defective mPDK1 in which Ser244 was replaced with alanine (mPDK1KD/S244A), is significantly phosphorylated in intact cells and is a direct substrate of wild-type mPDK1 fused to the yellow fluorescence protein. Phosphoamino acid analysis and phosphopeptide mapping studies revealed that mPDK1 trans-autophosphorylation occurred mainly on Ser244. On the other hand, Ser399 and Thr516, two recently identified autophosphorylation sites of mPDK1, are phosphorylated primarily through a cis mechanism. In vivo labeling studies revealed that insulin stimulated both mPDK1KD and mPDK1KD/S244A phosphorylation in Chinese hamster ovary cells overexpressing the insulin receptor. However, Western blot analysis using a phosphospecific antibody revealed no increase in insulin-stimulated phosphorylation of Ser244 in these cells overexpressing mPDK1. mPDK1 undergoes dimerization in cells and this self-association is enhanced by kinase inactivation. Deletion of the extreme C terminus disrupts mPDK1 dimerization and Ser244 trans-phosphorylation, suggesting that dimerization is important for mPDK1 trans-phosphorylation. Taken together, our results show that mPDK1 autophosphorylation occurs at multiple sites through both cis and trans mechanisms and suggest that dimerization and trans-phosphorylation may serve as mechanisms to regulate PDK1 activity in cells.  相似文献   

11.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased approximately 6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.  相似文献   

12.
13.
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.  相似文献   

14.
Wood CD  Kelly AP  Matthews SA  Cantrell DA 《FEBS letters》2007,581(18):3494-3498
Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction.  相似文献   

15.
The anti-tumorigenic and anti-proliferative effects of N-alpha-tosyl-l-phenylalanyl chloromethyl ketone (TPCK) have been known for more than three decades. Yet little is known about the discrete cellular targets of TPCK controlling these effects. Previous work from our laboratory showed TPCK, like the immunosuppressant rapamycin, to be a potent inhibitor of the 70-kilodalton ribosomal S6 kinase 1 (S6K1), which mediates events involved in cell growth and proliferation. We show here that rapamycin and TPCK display distinct inhibitory mechanisms on S6K1 as a rapamycin-resistant form of S6K1 was TPCK-sensitive. Additionally, we show that TPCK inhibited the activation of the related kinase and proto-oncogene Akt. Upstream regulators of S6K1 and Akt include phosphoinositide 3-kinase (PI 3-K) and 3-phosphoinositide-dependent kinase 1 (PDK1). Whereas TPCK had no effect on either mitogen-regulated PI 3-K activity or total cellular PDK1 activity, TPCK prevented phosphorylation of the PDK1 regulatory sites in S6K1 and Akt. Furthermore, whereas both PDK1 and the mitogen-activated protein kinase (MAPK) are required for full activation of the 90-kilodalton ribosomal S6 kinase (RSK), TPCK inhibited RSK activation without inhibiting MAPK activation. Consistent with the capacity of RSK and Akt to mediate a cell survival signal, in part through phosphorylation of the pro-apoptotic protein BAD, TPCK reduced BAD phosphorylation and led to cell death in interleukin-3-dependent 32D cells. Finally, in agreement with results seen in embryonic stem cells lacking PDK1, protein kinase A activation was not inhibited by TPCK showing TPCK specificity for mitogen-regulated PDK1 signaling. TPCK inhibition of PDK1 signaling thus disables central kinase cascades governing diverse cellular processes including proliferation and survival and provides an explanation for its striking biological effects.  相似文献   

16.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in activating the protein kinase A, G, and C subfamily. In particular, PDK1 plays an important role in regulating the Akt survival pathway by phosphorylating Akt on Thr-308. PDK1 kinase activity was thought to be constitutively active; however, recent reports suggested that its activity is regulated by binding to other proteins, such as protein kinase C-related kinase-2 (PRK2), p90 ribosomal protein S6 kinase-2 (RSK2), and heat-shock protein 90 (Hsp90). Here we report that PDK1 binds to 14-3-3 proteins in vivo and in vitro through the sequence surrounding Ser-241, a residue that is phosphorylated by itself and is critical for its kinase activity. Mutation of PDK1 to increase its binding to 14-3-3 decreased its kinase activity in vivo. By contrast, mutation of PDK1 to decrease its interaction with 14-3-3 resulted in increased PDK1 kinase activity. Moreover, incubation of wild-type PDK1 with recombinant 14-3-3 in vitro decreased its kinase activity. These data indicate that PDK1 kinase activity is negatively regulated by binding to 14-3-3 through the PDK1 autophosphorylation site Ser-241.  相似文献   

17.
The phosphatidylinositol 3-kinase signaling pathway in vascular endothelial cells is important for systemic angiogenesis and glucose metabolism. In this study, we addressed the precise role of the 3-phosphoinositide-dependent protein kinase 1 (PDK1)-regulated signaling network in endothelial cells in vivo, using vascular endothelial PDK1 knockout (VEPDK1KO) mice. Surprisingly, VEPDK1KO mice manifested enhanced glucose tolerance and whole-body insulin sensitivity due to suppression of their hepatic glucose production with no change in either peripheral glucose disposal or even impaired vascular endothelial function at 6 months of age. When mice were fed a standard diet at 6 months of age and a high-fat diet at 3 months of age, hypertrophy of epididymal adipose tissues was inhibited, adiponectin mRNA was significantly increased, and mRNA of MCP1, leptin, and TNFα was decreased in the white adipose tissue of VEPDK1KO mice in comparison with controls. Consequently, both the circulating adiponectin levels and the activity of hepatic AMP-activated protein kinase were significantly increased, subsequently enhancing whole-body insulin sensitivity and energy expenditure with increased hepatic fatty acid oxidation in VEPDK1KO mice. These results provide the first in vivo evidence that lowered angiogenesis through the deletion of PDK1 signaling not only interferes with the growth of adipose tissue but also induces increased energy expenditure due to amelioration of the adipocytokine profile. This demonstrates an unexpected role of PDK1 signaling in endothelial cells on the maintenance of proper glucose homeostasis through the regulation of adipocyte development.  相似文献   

18.
Phosphorylation of Thr(308) in the activation loop and Ser(473) at the carboxyl terminus is essential for protein kinase B (PKB/Akt) activation. However, the biochemical mechanism of the phosphorylation remains to be characterized. Here we show that expression of a constitutively active mutant of mouse 3-phosphoinositide-dependent protein kinase-1 (PDK1(A280V)) in Chinese hamster ovary cells overexpressing the insulin receptor was sufficient to induce PKB phosphorylation at Thr(308) to approximately the same extent as insulin stimulation. Phosphorylation of PKB by PDK1(A280V) was not affected by treatment of cells with inhibitors of phosphatidylinositol 3-kinase or by deletion of the pleckstrin homology (PH) domain of PKB. C(2)-ceramide, a cell-permeable, indirect inhibitor of PKB phosphorylation, did not inhibit PDK1(A280V)-catalyzed PKB phosphorylation in cells and had no effect on PDK1 activity in vitro. On the other hand, co-expression of full-length protein kinase C-related kinase-1 (PRK1/PKN) or 2 (PRK2) inhibited PDK1(A280V)-mediated PKB phosphorylation. Replacing alanine at position 280 with valine or deletion of the PH domain enhanced PDK1 autophosphorylation in vitro. However, deletion of the PH domain of PDK1(A280V) significantly reduced PDK1(A280V)-mediated phosphorylation of PKB in cells. In resting cells, PDK1(A280V) localized in the cytosol and at the plasma membrane. However, PDK1(A280V) lacking the PH domain localized predominantly in the cytosol. Taken together, our findings suggest that the wild-type PDK1 may not be constitutively active in cells. In addition, activation of PDK1 is sufficient to phosphorylate PKB at Thr(308) in the cytosol. Furthermore, the PH domain of PDK1 may play both positive and negative roles in regulating the in vivo function of the enzyme. Finally, unlike the carboxyl-terminal fragment of PRK2, which has been shown to bind PDK1 and allow the enzyme to phosphorylate PKB at both Thr(308) and Ser(473), full-length PRK2 and its related kinase PRK1/PKN may both play negative roles in PKB-mediated downstream biological events.  相似文献   

19.
3-phosphoinositide-dependent kinase-1 (PDK1) phosphorylates and activates several kinases in the cAMP-dependent, cGMP-dependent and protein kinase C (AGC) family. Many putative PDK1 substrates have been identified, but have not been analyzed following transient and specific inhibition of PDK1 activity. Here, we demonstrate that a previously characterized PDK1 inhibitor, BX-795, shows biological effects that are not consistent with PDK1 inhibition. Therefore, we describe the creation and characterization of a PDK1 mutant, L159G, which can bind inhibitor analogues containing bulky groups that hinder access to the ATP binding pocket of wild type (WT) kinases. When expressed in PDK1(-/-) ES cells, PDK1 L159G restored phosphorylation of PDK1 targets known to be hypophosphorylated in these cells. Screening of multiple inhibitor analogues showed that 1-NM-PP1 and 3,4-DMB-PP1 optimally inhibited the phosphorylation of PDK1 targets in PDK1(-/-) ES cells expressing PDK1 L159G but not WT PDK1. These compounds confirmed previously assumed PDK1 substrates, but revealed distinct dephosphorylation kinetics. While PDK1 inhibition had little effect on cell growth, it sensitized cells to apoptotic stimuli. Furthermore, PDK1 loss abolished growth of allograft tumors. Taken together we describe a model system that allows for acute and reversible inhibition of PDK1 in cells, to probe biochemical and biological consequences.  相似文献   

20.
A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号