首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ongoing DNA damage caused by reactive oxygen species generated during oxidative metabolism is considered a key factor contributing to cell aging as well as preconditioning cells to neoplastic transformation. We postulated before that a significant fraction of constitutive histone H2AX phosphorylation (CHP) and constitutive activation of ATM (CAA) seen in untreated normal and tumor cells occurs in response to such DNA damage. In the present study, we provide further evidence in support of this postulate. The level of ATM activation and H2AX phosphorylation, detected immunocytochemically, has been monitored in WI-38, A549, and TK6 cells treated with H2O2 as well as growing under conditions known or suspected to affect the level of endogenous oxidants. Thirty- to 60-min exposure of cells to 100 or 200 microM H2O2 led to an increase in the level of H2AX phosphorylation and ATM activation, particularly pronounced (nearly fivefold) in S-phase cells. Cell growth for 24-48 h under hypoxic conditions (3% O2) distinctly lowered the level of CHP and CAA while it had minor effect on cell cycle progression. Treatment (4 h) with 0.1 or 0.3 mM 3-bromopyruvate, an inhibitor of glycolysis and mitochondrial oxidative phosphorylation, reduced the level of CHP (up to fourfold) and also decreased the level of CAA. Growth of WI-38 cells in 2% serum concentration for 48 h led to a 25 and 30% reduction in CHP and CHA, respectively, compared with cells growing in 10% serum. The antioxidant vitamin C (2 mM) reduced CHP and CAA by 20-30% after 24 h of treatment, while the COX-2 inhibitor celecoxib (5 microM) had a minor effect on CHP and CAA, though it decreased the level of H2O2-induced H2AX phosphorylation and ATM activation. In contrast, dichloroacetate known to shift metabolism from anaerobic to oxidative glycolysis through its effect on pyruvate dehydrogenase kinase enhanced the level of CHP and CAA. Our present data and earlier observations strongly support the postulate that a large fraction of CHP and CAA occurs in response to DNA damage caused by metabolically generated oxidants. Cytometric analysis of CHP and CAA provides the means to measure the effectiveness of exogenous factors, which either through lowering aerobic metabolism or neutralizing radicals may protect DNA from such damage.  相似文献   

2.
3.
A variant of histone H2A, H2AX, is phosphorylated on Ser139 in response to DNA double-strand breaks (DSBs), and clusters of the phosphorylated form of H2AX (gamma-H2AX) in nuclei of DSB-induced cells show foci at breakage sites. Here, we show phosphorylation of H2AX in a cell cycle-dependent manner without any detectable DNA damage response. Western blot and immunocytochemical analyses with the anti-gamma-H2AX antibody revealed that H2AX is phosphorylated at M phase in HeLa cells. In ataxia-telangiectasia cells lacking ATM kinase activity, gamma-H2AX was scarcely detectable in the mitotic chromosomes, suggesting involvement of ATM in M-phase phosphorylation of H2AX. Single-cell gel electrophoresis assay and Western blot analysis with the anti-phospho-p53 (Ser15) antibody indicated that H2AX in human M-phase cells is phosphorylated independently of DSB and DNA damage signaling. Even in the absence of DNA damage, phosphorylation of H2AX in normal cell cycle progression may contribute to maintenance of genomic integrity.  相似文献   

4.
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.  相似文献   

5.
Damage that engenders DNA double-strand breaks (DSBs) activates ataxia telangiectasia mutated (ATM) kinase through its auto- or trans-phosphorylation on Ser1981 and activated ATM is one of the mediators of histone H2AX phosphorylation on Ser139. The present study was designed to explore: (i) whether measurement of ATM activation combined with H2AX phosphorylation provides a more sensitive indicator of DSBs than each of these events alone, and (ii) to reveal possible involvement of ATM activation in H2AX phosphorylation during apoptosis. Activation of ATM and/or H2AX phosphorylation in HL-60 or Jurkat cells treated with topotecan (Tpt) was detected immunocytochemically in relation to cell cycle phase, by multiparameter cytometry. Exposure to Tpt led to concurrent phosphorylation of ATM and H2AX in S-phase cells, whereas G1 cells were unaffected. Immunofluorescence (IF) of the S-phase cells immunostained for ATM-S1981P and gammaH2AX combined was distinctly stronger compared to that of the cells stained for each of these proteins alone. However, because of the relatively high ATM-S1981P IF of G1 cells, the ratio of IF of S to G1 cells, that is, the factor that determines competence of the assay in distinction of cells with DSBs, was 2- to 3-fold lower for ATM-S1981P alone, or for ATM-S1981P and gammaH2AX IF combined, than for gammaH2AX alone. ATM activation concurrent with H2AX phosphorylation, likely triggered by induction of DSBs during DNA fragmentation, occurred during apoptosis. The data suggest that frequency of activated ATM and phosphorylated H2AX molecules, per apoptotic cell, is comparable.  相似文献   

6.
Nitric oxide-releasing acetylsalicylic acid (NO-ASA; NO-aspirin) developed as an anti-inflammatory agent that was expected to avoid some of the adverse effects of aspirin (ASA), was recently shown to be cytotoxic to cells of different tumor lines. The cytotoxic properties and potency of NO-ASA are different than those of ASA which implies that the intracellular targets for NO-ASA and ASA, and their mechanism of action, are different. The aim of the present study was to reveal whether the cytotoxicity induced by NO-ASA is mediated by damage to DNA. We observed that even brief (1 h) treatment of human B-lymphoblastoid TK6 cells with ? 5 μM NO-ASA led to DNA damage revealed by the alkaline and neutral comet assays, histone H2AX phosphorylation on Ser 139, and ATM phosphorylation on Ser 1981, a marker of activation of this kinase. The induction of H2AX phosphorylation was preferential to S-phase cells. Exposure to ? 5 μM NO-ASA for over 3 h led to apoptosis, also preferentially of S-phase cells. Apoptosis was atypical; while chromatin was highly condensed there was no evidence of nuclear fragmentation nor were the cells positive in the TUNEL assay though they did express activated caspase-3. The induction of phosphorylation of H2AX on Ser 139 by NO-ASA was markedly attenuated in the presence of N-acetyl-L-cysteine, a scavenger of reactive oxygen species (ROS). The data imply that the NO-ASA induces DNA damage through oxidative stress; the oxidation-generated lesions provide a signal for induction of H2AX phosphorylation during DNA replication, perhaps when the progressing replication forks collide with the primary lesions converting them to DNA double-strand breaks. Because neither induction of H2AX phosphorylation nor apoptosis were observed at equimolar concentrations of ASA, the NO moiety attached to ASA appeared to mediate these effects.  相似文献   

7.
Oxidative burst is a defense mechanism used by specialized phagocytes such as granulocytes or monocytes to kill the invading microorganisms through generation of superoxide anions. Oxidative burst also results in DNA damage of the phagocytes. Phagocytes are terminally differentiated and some of very short life-span cells. We could find no reports whether oxidative burst-mediated DNA damage triggers in such cells histone H2AX-Ser139 phosphorylation and activation of Ataxia Telangiectasia Mutated (ATM), the signals otherwise used to activate DNA repair and checkpoint pathways in proliferating cells. We now present the evidence that induction of oxidative stress in human peripheral blood leukocytes by phorbol myristate acetate (PMA) was associated with intense phosphorylation of histone H2AX and with ATM activation, seen already 60 min after exposure to PMA. The modifications of H2AX and ATM in individual granulocytes, monocytes and lymphocytes were detected prior to caspases activation and thus were unrelated to induction of apoptosis. A large intercellular variation in response was observed, and only a fraction of cells in these subpopulations showed H2AX and ATM modifications. The data are compatible with the earlier observations of DNA damage during oxidative burst and suggest that even in terminally differentiated cells that have a short life-span, DNA damage triggers recruitment of the DNA repair machinery. The observed H2AX phosphorylation in lymphocytes may reflect their DNA damage by the superoxide ions propagating from the neighboring granulocytes and/or monocytes.  相似文献   

8.
The DNA topoisomerase I (topo1) inhibitor topotecan (TPT) and topo2 inhibitor mitoxantrone (MXT) damage DNA inducing formation of DNA double-strand breaks (DSBs). We have recently examined the kinetics of ATM and Chk2 activation as well as histone H2AX phosphorylation, the reporters of DNA damage, in individual human lung adenocarcinoma A549 cells treated with these drugs. Using a phospho-specific Ab to tumor suppressor protein p53 phosphorylated on Ser15 (p53-Ser15P) combined with an Ab that detects p53 regardless of the phosphorylation status and multiparameter cytometry we correlated the TPT- and MXT- induced p53-Ser15P with ATM and Chk2 activation as well as with H2AX phosphorylation in relation to the cell cycle phase. In untreated interphase cells, p53-Ser15P had "patchy" localization throughout the nucleoplasm while mitotic cells showed strong p53-Ser15P cytoplasmic immunofluorescence (IF). The intense phosphorylation of p53-Ser15, combined with activation of ATM and Chk2 (involving centrioles) as well as phosphorylation of H2AX seen in the untreated mitotic cells, suggest mobilization of the DNA damage detection/repair machinery in controlling cytokinesis. In the nuclei of cells treated with TPT or MXT, the expression of p53-Ser15P appeared as closely packed foci of intense IF. Following TPT treatment, the induction of p53-Ser15P was most pronounced in S-phase cells while no significant cell cycle phase differences were seen in cells treated with MXT. The maximal increase in p53-Ser15P expression, rising up to 2.5-fold above the level of its constitutive expression, was observed in cells treated with TPT or MXT for 4 - 6 h. This maximum expression of p53-Ser15P coincided in time with the peak of Chk2 activation but not with ATM activation and H2AX phosphorylation, both of which crested 1-2 h after the treatment with TPT or MXT. The respective kinetics of p53-Ser15 phosphorylation versus ATM and Chk2 activation suggest that in response to DNA damage by TPT or MXT, Chk2 rather than ATM mediates p53 phosphorylation.  相似文献   

9.
Reviewed are the methods aimed to detect DNA damage in individual cells, estimate its extent and relate it to cell cycle phase and induction of apoptosis. They include the assays that reveal DNA fragmentation during apoptosis, as well as DNA damage induced by genotoxic agents. DNA fragmentation that occurs in the course of apoptosis is detected by selective extraction of degraded DNA. DNA in chromatin of apoptotic cells shows also increased propensity to undergo denaturation. The most common assay of DNA fragmentation relies on labelling DNA strand breaks with fluorochrome-tagged deoxynucleotides. The induction of double-strand DNA breaks (DSBs) by genotoxic agents provides a signal for histone H2AX phosphorylation on Ser139; the phosphorylated H2AX is named gammaH2AX. Also, ATM-kinase is activated through its autophosphorylation on Ser1981. Immunocytochemical detection of gammaH2AX and/or ATM-Ser1981(P) are sensitive probes to reveal induction of DSBs. When used concurrently with analysis of cellular DNA content and caspase-3 activation, they allow one to correlate the extent of DNA damage with the cell cycle phase and with activation of the apoptotic pathway. The presented data reveal cell cycle phase-specific patterns of H2AX phosphorylation and ATM autophosphorylation in response to induction of DSBs by ionizing radiation, topoisomerase I and II inhibitors and carcinogens. Detection of DNA damage in tumour cells during radio- or chemotherapy may provide an early marker predictive of response to treatment.  相似文献   

10.
BACKGROUND: DNA replication stress often induces DNA damage. The antitumor drug hydroxyurea (HU), a potent inhibitor of ribonucleotide reductase that halts DNA replication through its effects on cellular deoxynucleotide pools, was shown to damage DNA inducing double-strand breaks (DSBs). Aphidicolin (APH), an inhibitor of alpha-like DNA polymerases, was also reported to cause DNA damage, but the evidence for induction of DSBs by APH is not straightforward. Histone H2AX is phosphorylated on Ser 139 in response to DSBs and one of the protein kinases that phosphorylate H2AX is ataxia telangiectasia mutated (ATM); activation of ATM is through its phosphorylation of Ser 1981. The present study was undertaken to reveal whether H2AX is phosphorylated in cells exposed to HU or APH and whether its phosphorylation is mediated by ATM. MATERIALS AND METHODS: HL-60 cells were treated in cultures with 0.1-5.0 mM HU or 1-4 muM APH for up to 5 h. Activation of ATM and H2AX phosphorylation was detected immunocytochemically using Ab specific to Ser1981-ATM or Ser 139-H2AX epitopes, respectively, concurrent with measurement of cellular DNA content. RESULTS: While exposure of cells to HU led to H2AX phosphorylation selectively during S phase and the cells progressing through the early portion of S (DI = 1.1-1.4) were more affected than late-S phase (DI = 1.6-1.9) cells, ATM was not activated by HU. In fact, the level of constitutive ("programmed") ATM phosphorylation was distinctly suppressed, in all phases of the cell cycle, at 0.1-5.0 mM HU. Cells' exposure to APH also resulted in H2AX phosphorylation at Ser139 with no evidence of ATM activation, and as in the case of HU, the early-S cells were more affected than the late-S phase cells. The rise in frequency of apoptotic cells became apparent after 2 h of exposure to HU or APH, and all apoptotic cells had markedly elevated levels of both H2AX-Ser139 and ATM-Ser1981 phosphorylation. CONCLUSIONS: The lack of correlation between H2AX phosphorylation and ATM activation indicates that protein kinase(s) other than ATM (ATR and/or DNA-dependent protein kinase) are activated by DSBs induced by replication stress. Interestingly, HU inhibits the constitutive ("programmed") level of ATM phosphorylation in untreated cells. However, DNA fragmentation during apoptosis activates ATM and dramatically increases level of H2AX phosphorylation.  相似文献   

11.
Elevated level of oxygen (hyperoxia) is widely used in critical care units and in respiratory insufficiencies. In addition, hyperoxia has been implicated in many diseases such as bronchopulmonary dysplasia or acute respiratory distress syndrome. Although hyperoxia is known to cause DNA base modifications and strand breaks, the DNA damage response has not been adequately investigated. We have investigated the effect of hyperoxia on DNA damage signaling and show that hyperoxia is a unique stress that activates the ataxia telangiectasia mutant (ATM)- and Rad3-related protein kinase (ATR)-dependent p53 phosphorylations (Ser6, -15, -37, and -392), phosphorylation of histone H2AX (Ser139), and phosphorylation of checkpoint kinase 1 (Chk1). In addition, we show that phosphorylation of p53 (Ser6) and histone H2AX (Ser139) depend on both ATM and ATR. We demonstrate that ATR activation precedes ATM activation in hyperoxia. Finally, we show that ATR is required for ATM activation in hyperoxia. Taken together, we report that ATR is the major DNA damage signal transducer in hyperoxia that activates ATM.  相似文献   

12.
BACKGROUND: Histone H1 and H3 phosphorylation associated with chromatin condensation during mitosis has been studied extensively. Less is known on histone modifications that occur during premature chromosome condensation (PCC). The aim of the present study was to reveal the status of histone H3 and H2AX phosphorylation on Ser-10 and Ser-139, respectively, as well as ATM activation through phosphorylation on Ser-1981, during PCC, and relate these events to cell-cycle phase and to initiation of apoptosis. MATERIALS AND METHODS: To induce PCC, A549 and HL-60 cells were exposed to the phosphatase inhibitor calyculin A (Cal A). Phosphorylation of histone H3 and H2AX as well as ATM activation were detected immunocytochemically concurrent with analysis of cellular DNA content and activation of caspase-3, a marker of apoptosis. The intensity of cellular fluorescence was measured by flow- or laser scanning cytometry. RESULTS: Induction of PCC led to rapid histone H3 phosphorylation, followed by activation of ATM and then H2AX phosphorylation in both, HL-60 and A549 cells. All these events occurred sequentially, prior to caspase-3 activation, and affected cells in all phases of the cell cycle. ATM activation and H2AX phosphorylation was seen during mitosis of A549 but not HL-60 cells. CONCLUSIONS: Because the Cal A-induced phosphorylation of histone H3 and H2AX, and of ATM, precede caspase-3 activation these modifications are pertinent to PCC and not to apoptosis-associated chromatin condensation. The sequence of histone H3 and H2AX phosphorylation and ATM activation during PCC is compatible with a role of ATM in mediating phosphorylation of H2AX but not H3. Mitosis in some cell types may proceed without ATM activation and H2AX phosphorylation.  相似文献   

13.
14.
ATM phosphorylates histone H2AX in response to DNA double-strand breaks   总被引:38,自引:0,他引:38  
A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.  相似文献   

15.
Oxidative stress linked to DNA damage is involved in the pathogenesis of Helicobacter pylori-associated gastric diseases. The DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair, and apoptosis through the activation of ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) and their target proteins. However, neither H. pylori-induced DDR nor the effects of antioxidants on the DNA damage have been established. This study aimed to investigate the detailed process of H. pylori-induced DNA damage and to examine whether lycopene, a natural antioxidant, inhibits DNA damage and cellular response of gastric epithelial AGS cells infected with H. pylori. AGS cells were cultured with H. pylori in Korean isolates and treated with or without lycopene. Cell viability, DNA damage indices, levels of 8-OH-dG, and reactive oxygen species (ROS) as well as cell-cycle distributions were determined. The activation of ATM, ATR, Chk1, and Chk2; histone H2AX focus formation; activation and induction of p53; and levels of Bax and Bcl-2 and poly(ADP-ribose) polymerase-1 (PARP-1) were assessed. The results showed that H. pylori induced apoptosis in AGS cells with increased Bax and decreased Bcl-2 expression as well as PARP-1 cleavage. Culture with H. pylori led to increases in intracellular ROS, 8-OH-dG, double-strand DNA breaks (DSBs), and DNA fragmentation. H. pylori induced activation of the ATM/Chk2 and ATR/Chk1 pathways, phosphorylation of H2AX and p53, and a delay in the progression of the cells entering the S phase. Lycopene inhibited H. pylori-induced increases in ROS, apoptosis, alterations in cell-cycle distribution, DSBs, and ATM- and ATR-mediated DDR in AGS cells. In conclusion, lycopene may be beneficial for treatment of H. pylori-induced gastric diseases associated with oxidative DNA damage.  相似文献   

16.
Viruses can interact with host cell molecules responsible for the recognition and repair of DNA lesions, resulting in dysfunctional DNA damage response (DDR). Cells with inefficient DDR are more vulnerable to therapeutic approaches that target DDR, thereby raising DNA damage to a threshold that triggers apoptosis. Here, we demonstrate that 2 Jurkat-derived cell lines with incorporated silent HIV-1 provirus show increases in DDR signaling that responds to formation of double strand DNA breaks (DSBs). We found that phosphorylation of histone H2AX on Ser139 (gamma-H2AX), a biomarker of DSBs, and phosphorylation of ATM at Ser1981, Chk2 at Thr68, and p53 at Ser15, part of signaling pathways associated with DSBs, are elevated in these cells. These results indicate a DDR defect even though the virus is latent. DDR-inducing agents, specifically high doses of nucleoside RT inhibitors (NRTIs), caused greater increases in gamma-H2AX levels in latently infected cells. Additionally, latently infected cells are more susceptible to long-term exposure to G-quadruplex stabilizing agents, and this effect is enhanced when the agent is combined with an inhibitor targeting DNA-PK, which is crucial for DSB repair and telomere maintenance. Moreover, exposing these cells to the cancer drug etoposide resulted in formation of DSBs at a higher rate than in un-infected cells. Similar effects of etoposide were also observed in population of primary memory T cells infected with latent HIV-1. Sensitivity to these agents highlights a unique vulnerability of latently infected cells, a new feature that could potentially be used in developing therapies to eliminate HIV-1 reservoirs.  相似文献   

17.
18.
Early assessment of cancer response to the treatment is of great importance in clinical oncology. Most antitumor drugs, among them DNA topoisomerase (topo) inhibitors, target nuclear DNA. The aim of the present study was to explore feasibility of the assessment of DNA damage response (DDR) as potential biomarker, eventually related to the clinical response, during treatment of human leukemias. We have measured DDR as reported by activation of ATM through its phosphorylation on Ser 1981 (ATM-S1981P) concurrent with histone H2AX phosphorylation on Ser139 (γH2AX) in leukemic blast cells from the blood of twenty patients, 16 children/adolescents and 4 adults, diagnosed with acute leukemias and treated with topo2 inhibitors doxorubicin, daunomycin, mitoxantrone or idarubicin. Phosphorylation of H2AX and ATM was detected using phospho-specific Abs and measured in individual cells by flow cytometry. The increase in the level of ATM-S1981P and γH2AX, varying in extent between the patients, was observed in blasts from the blood collected one hour after completion of the drug infusion with respect to the pre-treatment level. A modest degree of correlation was observed between the induction of ATM activation and H2AX phosphorylation in blasts of individual patients. The number of the studied patients (20) and the number of the clinically non-responding ones (2) was too low to draw a conclusion whether the assessment of DDR can be clinically prognostic. The present findings, however, demonstrate the feasibility of assessment of DDR during the treatment of leukemias with drugs targeting DNA.  相似文献   

19.
Etoposide (VP-16) belongs to the family of DNA topoisomerase II (topo2) inhibitors, drugs widely used in cancer chemotherapy. Their presumed mode of action is stabilization of “cleavable complexes” between topo2 and DNA; collisions of DNA replication forks with these complexes convert them into DNA double-strand breaks (DSBs), potentially lethal lesions that may trigger apoptosis. Immunocytochemical detection of activation of ATM (ATM-S1981P) and histone H2AX phosphorylation (γH2AX) provides a sensitive probe of the induction of DSBs in individual cells. Using multiparameter cytometry we measured the expression of ATM-S1981P and γH2AX as well as initiation of apoptosis (caspase-3 activation) in relation to the cell cycle phase in etoposide-treated human lymphoblastoid TK6 cells. The induction of ATM-S1981P and γH2AX was seen in all phases of the cell cycle. The G1-phase cells, however, preferentially underwent apoptosis. The extent of etoposide-induced H2AX phosphorylation was partially reduced by N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS).The maximal reduction of H2AX phosphorylation by NAC, seen in G1-phase cells, was nearly 50%. NAC also protected a fraction of G1 cells from etoposide-induced apoptosis, but had no such effect on S or G2M cells. However, no significant rise in the intracellular level of ROS upon treatment with etoposide was detected. The effects of etoposide were compared with the previously investigated effects of another topo2 inhibitor, mitoxantrone. The latter was seen to induce a maximal level of ATM-S1981P and γH2AX (partially abrogated by NAC) in G1-phase cells, but unlike etoposide, triggered apoptosis exclusively of S-phase cells. The data suggest that in addition to the generally accepted mechanism involving collisions of replication forks with the “cleavable complexes”, other mechanisms which appear to be different for etoposide vs. mitoxantrone, may contribute to formation of DSBs and to triggering of apoptosis.  相似文献   

20.
DNA damage induces cell cycle arrest and DNA repair or apoptosis in proliferating cells. Terminally differentiated cells are permanently withdrawn from the cell cycle and partly resistant to apoptosis. To investigate the effects of genotoxic agents in postmitotic cells, we compared DNA damage-activated responses in mouse and human proliferating myoblasts and their differentiated counterparts, the myotubes. DNA double-strand breaks caused by ionizing radiation (IR) induced rapid activating autophosphorylation of ataxia-teleangiectasia-mutated (ATM), phosphorylation of histone H2AX, recruitment of repair-associated proteins MRE11 and Nbs1, and activation of Chk2 in both myoblasts and myotubes. However, IR-activated, ATM-mediated phosphorylation of p53 at serine 15 (human) or 18 (mouse) [Ser15(h)/18(m)], and apoptosis occurred in myoblasts but was impaired in myotubes. This phosphorylation could be enforced in myotubes by the anthracycline derivative doxorubicin, leading to selective activation of proapoptotic genes. Unexpectedly, the abundance of autophosphorylated ATM was indistinguishable after exposure of myotubes to IR (10 Gy) or doxorubicin (1 microM/24 h) despite efficient phosphorylation of p53 Ser15(h)/18(m), and apoptosis occurred only in response to doxorubicin. These results suggest that radioresistance in myotubes might reflect a differentiation-associated, pathway-selective blockade of DNA damage signaling downstream of ATM. This mechanism appears to preserve IR-induced activation of the ATM-H2AX-MRE11/Rad50/Nbs1 lesion processing and repair pathway yet restrain ATM-p53-mediated apoptosis, thereby contributing to life-long maintenance of differentiated muscle tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号