首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RUNX1 plays opposing roles in breast cancer: a tumor suppressor in estrogen receptor-positive (ER+) disease and an oncogenic role in ER-negative (ER?) tumors. Potentially mediating the former, we have recently reported that RUNX1 prevents estrogen-driven suppression of the mRNA encoding the tumor suppressor AXIN1. Accordingly, AXIN1 protein expression was diminished upon RUNX1 silencing in ER+ breast cancer cells and was positively correlated with AXIN1 protein expression across tumors with high levels of ER. Here we report the surprising observation that RUNX1 and AXIN1 proteins are strongly correlated in ER? tumors as well. However, this correlation is not attributable to regulation of AXIN1 by RUNX1 or vice versa. The unexpected correlation between RUNX1, playing an oncogenic role in ER? breast cancer, and AXIN1, a well-established tumor suppressor hub, may be related to a high ratio between the expression of variant 2 and variant 1 (v2/v1) of AXIN1 in ER? compared with ER+ breast cancer. Although both isoforms are similarly regulated by RUNX1 in estrogen-stimulated ER+ breast cancer cells, the higher v2/v1 ratio in ER? disease is expected to weaken the tumor suppressor activity of AXIN1 in these tumors.  相似文献   

3.
mRNA的可变剪接(alternative splicing)是一种由一个mRNA前体(pre-mRNA)通过不同的剪接方式产生多个mRNA变异体(variants)的RNA加工过程。在过去很长一段时间里,人们认为mRNA剪接过程是独立于转录过程的一个转录后RNA加工过程。然而,越来越多的实验证明mRNA剪接在很大程度上是与转录偶联发生的。因此,剪接调控会受到与转录相关因素的调控。本文将对染色质与mRNA剪接调控的相关性和染色质结构调控可变剪接的分子机制进行阐述。  相似文献   

4.
5.
During DNA replication, stalled replication forks and DSBs arise when the replication fork encounters ICLs (interstrand crosslinks), covalent protein/DNA intermediates or other discontinuities in the template. Recently, homologous recombination proteins have been shown to function in replication-coupled repair of ICLs in conjunction with the Fanconi anemia (FA) regulatory factors FANCD2-FANCI, and, conversely, the FA gene products have been shown to play roles in stalled replication fork rescue even in the absence of ICLs, suggesting a broader role for the FA network than previously appreciated. Here we show that DNA2 helicase/nuclease participates in resection during replication-coupled repair of ICLs and other replication fork stresses. DNA2 knockdowns are deficient in HDR (homology-directed repair) and the S phase checkpoint and exhibit genome instability and sensitivity to agents that cause replication stress. DNA2 is partially redundant with EXO1 in these roles. DNA2 interacts with FANCD2, and cisplatin induces FANCD2 ubiquitylation even in the absence of DNA2. DNA2 and EXO1 deficiency leads to ICL sensitivity but does not increase ICL sensitivity in the absence of FANCD2. This is the first demonstration of the redundancy of human resection nucleases in the HDR step in replication-coupled repair, and suggests that DNA2 may represent a new mediator of the interplay between HDR and the FA/BRCA pathway.  相似文献   

6.
During DNA replication, stalled replication forks and DSBs arise when the replication fork encounters ICLs (interstrand crosslinks), covalent protein/DNA intermediates or other discontinuities in the template. Recently, homologous recombination proteins have been shown to function in replication-coupled repair of ICLs in conjunction with the Fanconi anemia (FA) regulatory factors FANCD2-FANCI, and, conversely, the FA gene products have been shown to play roles in stalled replication fork rescue even in the absence of ICLs, suggesting a broader role for the FA network than previously appreciated. Here we show that DNA2 helicase/nuclease participates in resection during replication-coupled repair of ICLs and other replication fork stresses. DNA2 knockdowns are deficient in HDR (homology-directed repair) and the S phase checkpoint and exhibit genome instability and sensitivity to agents that cause replication stress. DNA2 is partially redundant with EXO1 in these roles. DNA2 interacts with FANCD2, and cisplatin induces FANCD2 ubiquitylation even in the absence of DNA2. DNA2 and EXO1 deficiency leads to ICL sensitivity but does not increase ICL sensitivity in the absence of FANCD2. This is the first demonstration of the redundancy of human resection nucleases in the HDR step in replication-coupled repair, and suggests that DNA2 may represent a new mediator of the interplay between HDR and the FA/BRCA pathway.  相似文献   

7.
Bioinformatics of alternative splicing and its regulation   总被引:3,自引:0,他引:3  
The sequencing of the human genome and ensuing wave of data generation have brought new light upon the extent and importance of alternative splicing as an RNA regulatory mechanism. Alternative splicing could potentially explain the complexity of protein repertoire during evolution, and defects in the splicing mechanism are responsible for diseases as complex as cancer. Among the challenges that rise in light of these discoveries are cataloguing splice variation in the human and other eukaryotic genomes, and identifying and characterizing the splicing regulatory elements that control their expression. Bioinformatics efforts tackling these two questions are just at the beginning. This article is a survey of these methods.  相似文献   

8.
Zhang Y  Zhou X  Zhao L  Li C  Zhu H  Xu L  Shan L  Liao X  Guo Z  Huang P 《Molecules and cells》2011,31(2):113-122
Fanconi anemia (FA) is a rare cancer-predisposing genetic disease mostly caused by improper regulation of the monoubiquitination of Fanconi anemia complementation group D2 (FANCD2). Genetic studies have indicated that ubiquitin conjugating enzyme UBE2T and HHR6 could regulate FANCD2 monoubiquitination through distinct mechanisms. However, the exact regulation mechanisms of FANCD2 monoubiquitination in response to different DNA damages remain unclear. Here we report that UBE2W, a new ubiquitin conjugating enzyme, could regulate FANCD2 monoubiquitination by mechanisms different from UBE2T or HHR6. Indeed, UBE2W exhibits ubiquitin conjugating enzyme activity and catalyzes the monoubiquitination of PHD domain of Fanconi anemia complementation group L (FANCL) in vitro. UBE2W binds to FANCL, and the PHD domain is both necessary and sufficient for this interaction in mammalian cells. In addition, over-expression of UBE2W in cells promotes the monoubiquitination of FANCD2 and down-regulated UBE2W markedly reduces the UV irradiation-induced but not MMC-induced FANCD2 monoubiquitination. These results indicate that UBE2W regulates FANCD2 monoubiquitination by mechanisms different from UBE2T and HRR6. It may provide an additional regulatory step in the activation of the FA pathway.  相似文献   

9.
Li CY  Chu JY  Yu JK  Huang XQ  Liu XJ  Shi L  Che YC  Xie JY 《Cell research》2004,14(6):473-479
The splicing of many alternative exons in the precursor messenger RNA (pre-mRNA) is regulated by extracellular factors but the underlying molecular bases remain unclear. Here we report the differential regulation of Bcl-x pre-mRNA splicing by extracellular factors and their distinct requirements for pre-mRNA elements. In K562 leukemia cells, treatment with interleukin-6 (IL-6) or granulocyte-macrophage colony stimulating factor (GM-CSF) reduced the proportion of the Bcl-xL variant mRNA while treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) had no effect. In U251 glioma cells, however, TPA efficiently increased the Bcl-xL level. These regulations were also seen for a transfected splicing reporter mini-gene. Further analyses of deletion mutants indicate that nucleotides 1-176 of the downstream intron are required for the IL-6 effect, whereas additional nucleotides 177-284 are essential for the GM-CSF effect. As for the TPA effect, only nucleotides 1-76 are required in the downstream intron. Thus, IL-6, GM-CSF and TPA differentially regulate Bcl-x splicing and require specific intronic pre-mRNA sequences for their respective effects.  相似文献   

10.
Pax基因功能及其选择性剪接的研究进展   总被引:2,自引:0,他引:2  
王秀  王蔚  王义权 《生命科学》2008,20(1):125-130
Pax基因家族编码的蛋白是一组极为重要的转录调控因子,在胚胎发育的器官形成中扮演重要角色,其主要功能包括:调控细胞增殖、促进细胞自我更新、诱导前体细胞定向转移以及改变特异细胞系的分化方向。目前已知,Pax基因的非正常表达是多种先天性疾病的主要诱因。Pax基因的选择性剪接体通常具有一定的空间特异性,每种剪接体都有其主要作用的靶位和信号通路。文章简述了Pax基因的相关背景知识,详细介绍Paxl—Pax9调控在胚胎组织发育中的各项功能,并列举了现已确定的Pax基因在不同物种中的选择性剪接产物。  相似文献   

11.
A lot of evidence has been found on the link between tumorigenesis and the aberrant expression of splicing factors. A number of splicing factors have been reported to be either oncogenic or overexpressed in cancer cells. However, splicing factors can also play negative roles in tumorigenesis. In the current review, we focus on splicing factor poly(rC)-binding protein 1 (PCBP1), a novel tumor suppressor that is characterized by downregulation in many cancer types and shows inhibition of tumor formation and metastasis. Notably, the messenger RNA levels of PCBP1 are not significantly decreased in most cancer types. In fact, PCBP1 protein is often degraded or shows a loss-of-function through phosphorylation in cancer cells. PCBP1 is highly homologous to its family member, PCBP2. Interestingly, PCBP2 appears to be an oncogenic splicing factor. A growing body of evidence has shown that PCBP1 regulates alternative splicing, translation, and RNA stability of many cancer-related genes. Taking together, PCBP1 has distinctive tumor suppressive functions, and increasing PCBP1 expression may represent a new approach for cancer treatment.  相似文献   

12.
13.
14.
15.
Acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays an important role in cholesterol absorption. Human ACAT2 is highly expressed in small intestine and fetal liver, but its expression is greatly diminished in adult liver. The full-length human ACAT2 mRNA encodes a protein, designated ACAT2a, with 522 amino acids. We have previously reported the organization of the human ACAT2 gene and the differentiation-dependent promoter activity in intestinal Caco-2 cells. In the current work, two human ACAT2 mRNA variants produced by alternative splicing are cloned and predicted to encode two novel ACAT2 isoforms, named ACAT2b and ACAT2c, with 502 and 379 amino acids, respectively. These mRNA variants differ from ACAT2a mRNA by lack of the exon 4 (ACAT2b mRNA) and exons 4-5 plus 8-9-10 (ACAT2c mRNA). Significantly, comparable amounts of the alternatively spliced ACAT2 mRNA variants were detected by RT- PCR, and Western blot analysis confirmed the presence of their corresponding proteins in human liver and intestine cells. Furthermore, phosphorylation and enzymatic activity analyses demonstrated that the novel isoenzymes ACAT2b and ACAT2c lacked the phosphorylatable site SLLD, and their enzymatic activities reduced to 25%-35% of that of ACAT2a. These evidences indicate that alternative splicing produces two human ACAT2 mRNA variants that encode the novel ACAT2 isoenzymes. Our findings might help to understand the regulation of the ACAT2 gene expression under certain physiological and pathological conditions.  相似文献   

16.
We have recently identified an intronic polymorphic CA-repeat region in the human endothelial nitric oxide synthase (eNOS) gene as an important determinant of the splicing efficiency, requiring specific binding of hnRNP L. Here, we analyzed the position requirements of this CA-repeat element, which revealed its potential role in alternative splicing. In addition, we defined the RNA binding specificity of hnRNP L by SELEX: not only regular CA repeats are recognized with high affinity but also certain CA-rich clusters. Therefore, we have systematically searched the human genome databases for CA-repeat and CA-rich elements associated with alternative 5' splice sites (5'ss), followed by minigene transfection assays. Surprisingly, in several specific human genes that we tested, intronic CA RNA elements could function either as splicing enhancers or silencers, depending on their proximity to the alternative 5'ss. HnRNP L was detected specifically bound to these diverse CA elements. These data demonstrated that intronic CA sequences constitute novel and widespread regulatory elements of alternative splicing.  相似文献   

17.
18.
19.
Alteration of RNA splicing is a hallmark of cellular senescence, which is associated with age-related disease and cancer development. However, the roles of splicing factors in cellular senescence are not fully understood. In this study, we identified the splicing factor PRPF19 as a critical regulator of cellular senescence in normal human diploid fibroblasts. PRPF19 was downregulated during replicative senescence, and PRPF19 knockdown prematurely induced senescence-like cell cycle arrest through the p53–p21 pathway. RNA-sequencing analysis revealed that PRPF19 knockdown caused a switch of the MDM4 splicing isoform from stable full-length MDM4-FL to unstable MDM4-S lacking exon 6. We also found that PRPF19 regulates MDM4 splicing by promoting the physical interaction of other splicing factors, PRPF3 and PRPF8, which are key components of the core spliceosome, U4/U6.U5 tri-snRNP. Given that MDM4 is a major negative regulator of p53, our findings imply that PRPF19 downregulation inhibits MDM4-mediated p53 inactivation, resulting in induction of cellular senescence. Thus, PRPF19 plays an important role in the induction of p53-dependent cellular senescence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号