首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Collagen VI is an extracellular matrix protein forming a microfibrillar network in the endomysium of skeletal muscles. In humans, mutations in any of the three genes coding for collagen VI cause several skeletal muscle diseases, including Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD). Collagen VI null (Col6a1(-/-)) mice display a myopathic phenotype resembling that of BM and UCMD patients. Muscles lacking collagen VI are characterized by the presence of dilated sarcoplasmic reticulum and dysfunctional mitochondria, which triggers apoptosis and leads to muscle wasting. We have found that accumulation of abnormal organelles is due to an impairment of autophagy. Reactivation of the autophagic flux by either nutritional approaches or by pharmacological and genetics tools removes dysfunctional organelles and greatly ameliorates the dystrophic phenotype.  相似文献   

2.
Collagen VI is an ECM protein which forms a prominent microfibrillar network in the endomysium of skeletal muscle. Mutations in the genes coding for the three chains of collagen VI cause skeletal muscle diseases; the severe wasting Ullrich congenital muscular dystrophy (UCMD) normally present at birth, and the milder Bethlem myopathy (BM). The pathogenesis of both collagen VI myopathies was unknown until 2003. Our group, utilizing Col6a1 deficient mice, discovered a latent mitochondrial dysfunction that caused increased apoptosis in muscle cells. These effects could be reverted by incubating Col6a1 null muscle fibres with cyclosporin A (CsA), an inhibitor of the mitochondrial permeability pore; more interestingly, the treatment of Col6a1 null mice with CoA rescued the muscle phenotype in vivo.These findings demonstrated an unexpected collagen VI/mitochondrial connection as the basis for the UCMD and BM pathogenesis and suggested a strategy for a possible pharmacological treatment of the diseases. This was assessed by demonstrating that muscle biopsies from patients with UCMD showed an abnormal mitochondrial depolarization and that treatment with CsA normalized the mitochondrial phenotype.In this study we report the results of an open pilot trial of four UCMD and one BM patients, representing a range of collagen VI deficiency and having mutations in three of the collagen VI genes. As determined in muscle biopsies prior to treatment, all patients displayed mitochondrial dysfunction and muscle fibres showed an increased frequency of apoptosis. When patients were treated for 1 month with a low daily dose of CsA, primary muscle cell cultures of biopsies obtained at the end of the treatment showed a decreased apoptosis and increased immunohistochemical signs of muscle fibre regeneration. These results confirm that the pathogenic mechanism found in Col6a1 deficient mice also plays a crucial role in hereditary muscle diseases in human, and suggest that targeted treatment of these mitochondrial defects in patients with UCMD and BM may be effective in preventing and/or reverting muscle alterations.It is also important to consider that desensitization of the permeability transition pore by CsA occurs independently of calcineurin inhibition; because a CsA derivative that has no immunosuppressive activity appears to be as effective as the parent molecule, long-term trials should be designed to prevent irreversible muscle damages in young patients affected by collagen VI myopathies, without exposing them to infective risks.  相似文献   

3.
Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the “classical” α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders.  相似文献   

4.
《Autophagy》2013,9(12):1415-1423
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

5.
Collagen VI myopathies (Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM), and myosclerosis myopathy) share a common pathogenesis, that is, mitochondrial dysfunction due to deregulation of the permeability transition pore (PTP). This effect was first identified in the Col6a1(-/-) mouse model and then in muscle cell cultures from UCMD and BM patients; the normalizing effect of cyclosporin A (CsA) confirmed the pathogenic role of PTP opening. In order to determine whether mitochondrial performance can be used as a criterion for inclusion in clinical trials and as an outcome measure of the patient response to therapy, it is mandatory to establish whether mitochondrial dysfunction is conserved in primary cell cultures from UCMD and BM patients. In this study we report evidence that mitochondrial dysfunction and the consequent increase of apoptotic rate can be detected not only, as previously reported, in muscle, but also in fibroblast cell cultures established from muscle biopsies of collagen VI-related myopathic patients. However, the mitochondrial phenotype is no longer maintained after nine passages in culture. These data demonstrate that the dire consequences of mitochondrial dysfunction are not limited to myogenic cells, and that this parameter can be used as a suitable diagnostic criterion, provided that the cell culture conditions are carefully established.  相似文献   

6.
7.
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

8.
Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD) sit at opposite ends of a clinical spectrum caused by mutations in the extracellular matrix protein collagen VI. Bethlem myopathy is relatively mild, and patients remain ambulant in adulthood while many UCMD patients lose ambulation by their teenage years and require respiratory interventions. Dominant and recessive mutations are found across the entire clinical spectrum; however, recessive Bethlem myopathy is rare, and our understanding of the molecular pathology is limited. We studied a patient with Bethlem myopathy. Electron microscopy of his muscle biopsy revealed abnormal mitochondria. We identified a homozygous COL6A2 p.D871N amino acid substitution in the C-terminal C2 A-domain. Mutant α2(VI) chains are unable to associate with α1(VI) and α3(VI) and are degraded by the proteasomal pathway. Some collagen VI is assembled, albeit more slowly than normal, and is secreted. These molecules contain the minor α2(VI) C2a splice form that has an alternative C terminus that does include the mutation. Collagen VI tetramers containing the α2(VI) C2a chain do not assemble efficiently into microfibrils and there is a severe collagen VI deficiency in the extracellular matrix. We expressed wild-type and mutant α2(VI) C2 domains in mammalian cells and showed that while wild-type C2 domains are efficiently secreted, the mutant p.D871N domain is retained in the cell. These studies shed new light on the protein domains important for intracellular and extracellular collagen VI assembly and emphasize the importance of molecular investigations for families with collagen VI disorders to ensure accurate diagnosis and genetic counseling.  相似文献   

9.
10.
《Autophagy》2013,9(12):1405-1406
Skeletal muscle fibers of collagen VI null (Col6a1?/?) mice show signs of degeneration due to a block in autophagy, leading to the accumulation of damaged mitochondria and excessive apoptosis. Attempts to induce autophagic flux by subjecting these mutant mice to long-term or shorter bursts of physical activity are unsuccessful (see Grumati, et al., pp. 1415–23). In normal mice, the induction of autophagy in the skeletal muscles post-exercise is able to prevent the accumulation of damaged organelles and maintain cellular homeostasis. Thus, these studies provide an important connection between autophagy and exercise physiology.  相似文献   

11.
Collagen VI is a major extracellular matrix (ECM) protein with a critical role in maintaining skeletal muscle functional integrity. Mutations in COL6A1, COL6A2 and COL6A3 genes cause Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy, and Myosclerosis. Moreover, Col6a1(-/-) mice and collagen VI deficient zebrafish display a myopathic phenotype. Recently, two additional collagen VI chains were identified in humans, the α5 and α6 chains, however their distribution patterns and functions in human skeletal muscle have not been thoroughly investigated yet. By means of immunofluorescence analysis, the α6 chain was detected in the endomysium and perimysium, while the α5 chain labeling was restricted to the myotendinous junctions. In normal muscle cultures, the α6 chain was present in traces in the ECM, while the α5 chain was not detected. In the absence of ascorbic acid, the α6 chain was mainly accumulated into the cytoplasm of a sub-set of desmin negative cells, likely of interstitial origin, which can be considered myofibroblasts as they expressed α-smooth muscle actin. TGF-β1 treatment, a pro-fibrotic factor which induces trans-differentiation of fibroblasts into myofibroblasts, increased the α6 chain deposition in the extracellular matrix after addition of ascorbic acid. In order to define the involvement of the α6 chain in muscle fibrosis we studied biopsies of patients affected by Duchenne Muscular Dystrophy (DMD). We found that the α6 chain was dramatically up-regulated in fibrotic areas where, in contrast, the α5 chain was undetectable. Our results show a restricted and differential distribution of the novel α6 and α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, suggesting that these new chains may play specific roles in specialized ECM structures. While the α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain appears implicated in ECM remodeling during muscle fibrosis.  相似文献   

12.
13.
Recessive mutations in two of the three collagen VI genes, COL6A2 and COL6A3, have recently been shown to cause Ullrich congenital muscular dystrophy (UCMD), a frequently severe disorder characterized by congenital muscle weakness with joint contractures and coexisting distal joint hyperlaxity. Dominant mutations in all three collagen VI genes had previously been associated with the considerably milder Bethlem myopathy. Here we report that a de novo heterozygous deletion of the COL6A1 gene can also result in a severe phenotype of classical UCMD precluding ambulation. The internal gene deletion occurs near a minisatellite DNA sequence in intron 8 that removes 1.1 kb of genomic DNA encompassing exons 9 and 10. The resulting mutant chain contains a 33-amino acid deletion near the amino-terminus of the triple-helical domain but preserves a unique cysteine in the triple-helical domain important for dimer formation prior to secretion. Thus, dimer formation and secretion of abnormal tetramers can occur and exert a strong dominant negative effect on microfibrillar assembly, leading to a loss of normal localization of collagen VI in the basement membrane surrounding muscle fibers. Consistent with this mechanism was our analysis of a patient with a much milder phenotype, in whom we identified a previously described Bethlem myopathy heterozygous in-frame deletion of 18 amino acids somewhat downstream in the triple-helical domain, a result of exon 14 skipping in the COL6A1 gene. This deletion removes the crucial cysteine, so that dimer formation cannot occur and the abnormal molecule is not secreted, preventing the strong dominant negative effect. Our studies provide a biochemical insight into genotype-phenotype correlations in this group of disorders and establish that UCMD can be caused by dominantly acting mutations.  相似文献   

14.
《Autophagy》2013,9(2):307-309
Autophagy is required for cellular survival and for the clearance of damaged proteins and altered organelles. Excessive autophagy activation contributes to muscle loss in different catabolic conditions. However, the function of basal autophagy for homeostasis of skeletal muscle was unknown. To clarify this issue we have generated conditional and inducible knockout mice for the critical gene Atg7, to block autophagy specifically in skeletal muscle. Atg7 null muscles reveal an unexpected phenotype which is characterized by muscle atrophy, weakness and features of myofiber degeneration. Morphological, biochemical, and molecular analyses of our autophagy knockout mice show the presence of protein aggregates, abnormal mitochondria, accumulation of membrane bodies, sarcoplasmic reticulum distension, vacuolization, oxidative stress and apoptosis. Moreover, autophagy inhibition does not protect skeletal muscles from atrophy during denervation and fasting, but instead promotes greater muscle loss. In conclusion, autophagy plays a critical role for myofiber maintenance and its activation is crucial to avoid accumulation of toxic proteins and dysfunctional organelles that, in the end, would lead to atrophy and weakness.  相似文献   

15.
Collagen VI and WARP are extracellular structural macromolecules present in cartilage and associated with BM suprastructures in non-skeletal tissues. We have previously shown that in WARP-deficient mice, collagen VI is specifically reduced in regions of the peripheral nerve ECM where WARP is expressed, suggesting that both macromolecules are part of the same suprastructure. The object of this study was to conduct a detailed analysis of WARP-collagen VI interactions in vitro in cartilage, a tissue rich in WARP and collagen VI. Immunohistochemical analysis of mouse and human articular cartilage showed that WARP and collagen VI co-localize in the pericellular matrix of superficial zone articular chondrocytes. EM analysis on extracts of human articular cartilage showed that WARP associates closely with collagen VI-containing suprastructures. Additional evidence of an interaction is provided by immunogold EM and immunoblot analysis showing that WARP was present in collagen VI-containing networks isolated from cartilage. Further characterization were done by solid phase binding studies and reconstitution experiments using purified recombinant WARP and isolated collagen VI. Collagen VI binds to WARP with an apparent Kd of approximately 22 nM and the binding site(s) for WARP resides within the triple helical domain since WARP binds to both intact collagen VI tetramers and pepsinized collagen VI. Together, these data confirm and extend our previous findings by demonstrating that WARP and collagen VI form high affinity associations in vivo in cartilage. We conclude that WARP is ideally placed to function as an adapter protein in the cartilage pericellular matrix.  相似文献   

16.

Background

Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts.

Aims & Methods

In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays.

Findings

We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases.  相似文献   

17.
Ullrich congenital muscular dystrophy (UCMD) is a disabling and life-threatening disorder resulting from either recessive or dominant mutations in genes encoding collagen VI. Although the majority of the recessive UCMD cases have frameshift or nonsense mutations in COL6A1, COL6A2, or COL6A3, recessive structural mutations in the COL6A2 C-globular region are emerging also. However, the underlying molecular mechanisms have remained elusive. Here we identified a homozygous COL6A2 E624K mutation (C1 subdomain) and a homozygous COL6A2 R876S mutation (C2 subdomain) in two UCMD patients. The consequences of the mutations were investigated using fibroblasts from patients and cells stably transfected with the mutant constructs. In contrast to expectations based on the clinical severity of these two patients, secretion and assembly of collagen VI were moderately affected by the E624K mutation but severely impaired by the R876S substitution. The E624K substitution altered the electrostatic potential of the region surrounding the metal ion-dependent adhesion site, resulting in a collagen VI network containing thick fibrils and spots with densely packed microfibrils. The R876S mutation prevented the chain from assembling into triple-helical collagen VI molecules. The minute amount of collagen VI secreted by the R876S fibroblasts was solely composed of a faster migrating chain corresponding to the C2a splice variant with an alternative C2 subdomain. In transfected cells, the C2a splice variant was able to assemble into short microfibrils. Together, the results suggest that the C2a splice variant may functionally compensate for the loss of the normal COL6A2 chain when mutations occur in the C2 subdomain.  相似文献   

18.
The collagen content and the rate of collagen synthesis were measured in the anterior and posterior latissimus dorsi muscles and in heart from fully grown fowl. This was done by measuring the proline/hydroxyproline ratios in the muscle and by a constant infusion of [14C]proline. These measurements were also made during the hypertrophy of the anterior muscle in response to the attachment of a weight to one wing of the fowl. In the non-growing muscles the collagen content was higher in the anterior muscle (22.8% of total protein) than in the posterior muscle (9.5% of total protein) and lowest in the heart (3.8% of total protein). In the two skeletal muscles a little over half of the collagen was accounted for by internal collagen (i.e. perimysium and endomysium). Collagen synthesis in these non-growing muscles occurred at 0.59%/day in each of the two skeletal muscles and at 0.88%/day in the cardiac muscle. During hypertrophy the collagen content of the anterior muscle increased, but not as fast as intracellular protein, so that after 58 days the concentration had fallen from 22.8 to 14.4% of total protein. This may have resulted from an incomplete production of the epimysial sheath, since the concentration of internal collagen did not fall and as a result accounted for over 80% of the total in the enlarged muscle. Collagen synthesis increased 8-fold during the first week of the hypertrophy, but never amounted to more than 4% of the total muscle protein synthesis. When the net accumulation of collagen is compared with the increased rate of synthesis it is concluded that between 30 and 70% of the newly synthesized collagen may have been degraded.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号