首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the secretory pathway, the secretion of proteins to the plasma membrane or to the extracellular milieu occurs via vesicular transport from the endoplasmic reticulum, via the Golgi apparatus, to the plasma membrane. This process and the players involved are understood in considerable detail. However, the mode of secretion of proteins that lack a signal sequence and do not transit through the secretory pathway has not been described, despite the fact that the literature is replete with examples of such proteins. One such protein is an evolutionarily conserved, secreted Acyl-CoA binding protein (known as AcbA in Dictyostelium discoideum, Acb1 in yeast and diazepam-binding inhibitor in mammals). Two recent papers highlighted in this punctum have elucidated the pathways required for the unconventional secretion of Acb1 in Pichia pastoris and Saccharomyces cerevisiae. Both implicate autophagy proteins and autophagosome formation in the process, while also uncovering roles for other interesting proteins in the unconventional secretion of Acb1.  相似文献   

2.
Starving Dictyostelium discoideum cells secrete AcbA, an acyl coenzyme A–binding protein (ACBP) that lacks a conventional signal sequence for entering the endoplasmic reticulum (ER). Secretion of AcbA in D. discoideum requires the Golgi-associated protein GRASP. In this study, we report that starvation-induced secretion of Acb1, the Saccharomyces cerevisiae ACBP orthologue, also requires GRASP (Grh1). This highlights the conserved function of GRASP in unconventional secretion. Although genes required for ER to Golgi or Golgi to cell surface transport are not required for Acb1 secretion in yeast, this process involves autophagy genes and the plasma membrane t-SNARE, Sso1. Inhibiting transport to vacuoles does not affect Acb1 secretion. In sum, our experiments reveal a unique secretory pathway where autophagosomes containing Acb1 evade fusion with the vacuole to prevent cargo degradation. We propose that these autophagosome intermediates fuse with recycling endosomes instead to form multivesicular body carriers that then fuse with the plasma membrane to release cargo.  相似文献   

3.
In this issue, Duran et al. (2010. J. Cell Biol. doi: 10.1083/jcb.200911154) and Manjithaya et al. (2010. J. Cell Biol. doi: 10.1083/jcb.200911149) use yeast genetics to reveal a role for autophagosome intermediates in the unconventional secretion of an acyl coenzyme A (CoA)–binding protein that lacks an endoplasmic reticulum signal sequence. Medium-chain acyl CoAs are also required and may be important for substrate routing to this pathway.In eukaryotic cells, most secreted proteins rely on the highly conserved secretory pathway for their release into the extracellular space. Signal sequences target them for cotranslational translocation across the ER membrane, and the proteins fold within the ER lumen. The proteins are then transported to and through the Golgi apparatus, sorted, and delivered to the cell surface. The machinery responsible for the secretory pathway is comprised of proteins that collect cargo, form transport vesicles, and help vesicles recognize and fuse at the correct target membranes. A small number of secreted proteins use secretory pathway-independent routes by a process called unconventional secretion (Nickel and Rabouille, 2009). In this issue, Duran et al. and Manjithaya et al. make powerful use of yeast genetics to provide new mechanistic insight into the previously unknown, unconventional route taken by an acyl CoA–binding protein (ACBP) to reach the extracellular space.The simplest pathway for unconventional secretion is that taken by the yeast a-factor mating pheromone. This farnesylated and methylated dodecapeptide is exported by the STE6 gene product that encodes an ATP-binding cassette (ABC) family transporter (Kuchler et al., 1989; McGrath and Varshavsky, 1989). Larger proteins, including FGF2, galectins 1 and 3, a subset of interleukins, and the engrailed homeodomain protein are also unconventional secretory cargoes, but their precise routes of export are unknown (Nickel and Rabouille, 2009). During an inflammatory response, interleukin-1β is somehow translocated from the cytosol into secretory lysosomes for release from cells by a still poorly defined mechanism. Caspase-1 may be required for the unconventional secretion of all of these proteins, suggesting that they may use a common route (Keller et al., 2008).Unconventional secretion of an ACBP was first reported in Dictyostelium discoideum. In this organism, spore formation is activated by release of the 10-kD, ER signal sequence lacking, AcbA protein from prespore cells. Secreted AcbA is proteolyzed extracellularly to produce SDF-2 (spore differentiation factor–2; Anjard et al., 1998). Kinseth et al. (2007) showed that a Golgi-associated protein, GRASP, was required for AcbA release and subsequent SDF-2 production but not for cell growth. Inhibitors of ABC family transporters had no influence on AcbA release. Kinseth et al. (2007) revealed an entirely unexpected role for a Golgi protein in unconventional secretion and a route for AcbA that was distinct from a-factor. A conserved role for GRASP was also later reported for the unconventional secretion of α-integrin at a specific stage of Drosophila melanogaster development (Schotman et al., 2008).Duran et al. (2010) now show that secretion of the Saccharomyces cerevisiae AcbA orthologue, Acb1, also requires the corresponding yeast GRASP orthologue, Grh1. As in D. discoideum, nitrogen starvation triggered Acb1 secretion in a concerted pulse. Genes known to be essential for conventional secretion (SEC23, SEC7, or SEC1) or a-factor release (STE6) were not needed for Acb1 release, confirming that the protein uses an unconventional pathway. However, the SEC18 gene that encodes the NSF ATPase was needed. This ATPase disassembles SNARE proteins and is required for all cellular membrane fusion events.The requirement for starvation suggested that an autophagosome intermediate might be involved. Indeed, mutants impaired in various stages of autophagy were all deficient in Acb1 secretion. Fusion of autophagosomes with the vacuole was not required, but the endosomal t-SNARE, Tlg2, and the plasma membrane t-SNARE, Sso1, were required. Finally, convergence of the autophagosomal and the multivesicular endosome pathways was required.Manjithaya et al. (2010) monitored release of Acb1 from the yeast Pichia pastoris by assaying the generation of an SDF-2–like activity that would trigger sporulation in D. discoideum. As in S. cerevisiae, release from P. pastoris required the GRASP homologue Grh1 and numerous autophagy gene products, in particular, Atg11, which is required for receptor-dependent autophagy (Xie and Klionsky, 2007). Similar to the baker’s yeast findings, a plasma membrane t-SNARE was also implicated.Production of medium chain fatty acyl CoAs was needed for Acb1 secretion from P. pastoris. Manjithaya et al. (2010) propose that Acb1 secretion may require that Acb1 bind its medium-chain acyl CoA substrate. Alternatively, the acyl CoA could be needed to acylate a protein (or proteins) that participates in autophagosomal incorporation of Acb1 protein. Lipid modification and/or binding seem to be a recurring theme for unconventional secretion cargoes (Nickel and Rabouille, 2009) and may contribute to incorporation into nascent autophagosomal structures.These experiments suggest that Acb1 is targeted for selective autophagy, a process that begins with recruitment to a so-called phagophore assembly site (Fig. 1). Phagophores are engulfed by multivesicular endosomes that normally deliver their contents to the yeast vacuole (or lysosomes). In some cases, a subset of multivesicular endosomes fuses with the plasma membrane and releases their contents (Simons and Raposo, 2009; Théry et al., 2009). In these studies, fusion of phagophores with multivesicular endosomes and subsequent fusion of these compartments with the plasma membrane appear to represent the major route of unconventional secretion of ACBPs. The use of specific mutant yeast strains has provided key insight into the specific pathways taken by unusual secretory cargoes. These studies also implicate specific SNARE proteins in the poorly understood, multivesicular endosome release process.Open in a separate windowFigure 1.A model for unconventional secretion of Acb1. Selective autophagy involves cargo collection on the surface of a phagophore membrane (blue). These are engulfed by a multivesicular endosome that fuses with the plasma membrane to release its content. Whether the phagophore is released from an endosomal, lumenal vesicle by lipase action before exocytosis (?) is not known. Duran et al. (2010) and Manjithaya et al. (2010) show that the t-SNARE Sso1 is needed for exocytosis, and fusion with the vacuole is not required.What conserved role does GRASP play? A connection between autophagy and the Golgi complex was recently reported by Itoh et al. (2008), who showed a direct link between the autophagy protein Atg16L1 and the Golgi Rab GTPase Rab33b. We do not yet know the precise origins of the phagophore membrane that participates in unconventional secretion, but roles for GRASP and Rab33b suggest that the Golgi is clearly important for this process. Does GRASP help segregate membrane components needed to form a nascent phagophore? How do ACBPs and other unconventionally secreted substrates actually engage the autophagy machinery? ACBP release involves nitrogen starvation; therefore, is stress important for unconventional secretion, and do other stress signals trigger an autophagic response? Important areas for future research include the identification of such signals, the elucidation of the mechanisms by which these signals are translated into cargo sequestration, and determination of the breadth and diversity of proteins that make use of this unconventional secretory pathway.  相似文献   

4.
Vivek Malhotra 《The EMBO journal》2013,32(12):1660-1664
The process by which proteins are secreted without entering the classical endoplasmic reticulum (ER)–Golgi complex pathway, in eukaryotic cells, is conveniently called unconventional protein secretion. Recent studies on one such protein called Acb1 have revealed a number of components involved in its secretion. Interestingly, conditions that promote the secretion of Acb1 trigger the biogenesis of a new compartment called CUPS (Compartment for Unconventional Protein Secretion). CUPS form near the ER exit site but lack ER‐specific proteins. Other proteins that share some of the features common with the secretion of Acb1 are interleukin‐1β and tissue transglutaminase. Here I will review recent advances made in the field and propose a new model for unconventional protein secretion.  相似文献   

5.
Adaptation to stress by eukaryotic pathogens is often accompanied by a transition in cellular morphology. The human fungal pathogen Cryptococcus neoformans is known to switch between the yeast and the filamentous form in response to amoebic predation or during mating. As in the classic dimorphic fungal pathogens, the morphotype is associated with the ability of cryptococci to infect various hosts. Many cryptococcal factors and environmental stimuli, including pheromones (small peptides) and nutrient limitation, are known to induce the yeast-to-hypha transition. We recently discovered that secreted matricellular proteins could also act as intercellular signals to promote the yeast-to-hypha transition. Here we show that the secreted acyl coenzyme A (acyl-CoA)-binding protein Acb1 plays an important role in enhancing this morphotype transition. Acb1 does not possess a signal peptide. Its extracellular secretion and, consequently, its function in filamentation are dependent on an unconventional GRASP (Golgi reassembly stacking protein)-dependent secretion pathway. Surprisingly, intracellular recruitment of Acb1 to the secretory vesicles is independent of Grasp. In addition to Acb1, Grasp possibly controls the secretion of other cargos, because the graspΔ mutant, but not the acb1Δ mutant, is defective in capsule production and macrophage phagocytosis. Nonetheless, Acb1 is likely the major or the sole effector of Grasp in terms of filamentation. Furthermore, we found that the key residue of Acb1 for acyl binding, Y80, is critical for the proper subcellular localization and secretion of Acb1 and for cryptococcal morphogenesis.  相似文献   

6.
The endoplasmic reticulum (ER)-Golgi-independent, unconventional secretion of Acb1 requires many different proteins. They include proteins necessary for the formation of autophagosomes, proteins necessary for the fusion of membranes with the endosomes, proteins of the multivesicular body pathway, and the cell surface target membrane SNARE Sso1, thereby raising the question of what achieves the connection between these diverse proteins and Acb1 secretion. In the present study, we now report that, upon starvation in Saccharomyces cerevisiae, Grh1 is collected into unique membrane structures near Sec13-containing ER exit sites. Phosphatidylinositol 3 phosphate, the ESCRT (endosomal sorting complex required for transport) protein Vps23, and the autophagy-related proteins Atg8 and Atg9 are recruited to these Grh1-containing membranes, which lack components of the Golgi apparatus and the endosomes, and which we call a novel compartment for unconventional protein secretion (CUPS). We describe the cellular proteins required for the biogenesis of CUPS, which we believe is the sorting station for Acb1's release from the cells.  相似文献   

7.
8.
Autophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear. Here we show that in response to lysosomal damage, the prototypical cytosolic secretory autophagy cargo IL‐1β is recognized by specialized secretory autophagy cargo receptor TRIM16 and that this receptor interacts with the R‐SNARE Sec22b to recruit cargo to the LC3‐II+ sequestration membranes. Cargo secretion is unaffected by downregulation of syntaxin 17, a SNARE promoting autophagosome–lysosome fusion and cargo degradation. Instead, Sec22b in combination with plasma membrane syntaxin 3 and syntaxin 4 as well as SNAP‐23 and SNAP‐29 completes cargo secretion. Thus, secretory autophagy utilizes a specialized cytosolic cargo receptor and a dedicated SNARE system. Other unconventionally secreted cargo, such as ferritin, is secreted via the same pathway.  相似文献   

9.
Most proteins follow the classical secretory pathway from the endoplasmic reticulum, via the Golgi, to the plasma membrane or extracellular medium. However, some proteins reach these final destinations by two alternative routes. One sustains the extracellular delivery of cytoplasmic proteins that lack a signal peptide, the other supports the transport of transmembrane proteins to the plasma membrane in a manner that bypasses the Golgi. Here, we highlight the observation that some unconventional secretion events are triggered by cellular stress. Furthermore, one Golgi protein, Golgi Re-Assembly and Stacking Protein (GRASP), has been shown to be essential to both types of unconventional secretion and we discuss ways in which it may support these events in a Golgi-independent manner.  相似文献   

10.
In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)–binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2–like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion.  相似文献   

11.
Fibroblast growth factor 2 (FGF2) is a key signaling molecule in tumor-induced angiogenesis. FGF2 is secreted by an unconventional secretory mechanism that involves phosphatidylinositol 4,5-bisphosphate-dependent insertion of FGF2 oligomers into the plasma membrane. This process is regulated by Tec kinase-mediated tyrosine phosphorylation of FGF2. Molecular interactions driving FGF2 monomers into membrane-inserted FGF2 oligomers are unknown. Here we identify two surface cysteines that are critical for efficient unconventional secretion of FGF2. They represent unique features of FGF2 as they are absent from all signal-peptide-containing members of the FGF protein family. We show that phosphatidylinositol 4,5-bisphosphate-dependent FGF2 oligomerization concomitant with the generation of membrane pores depends on FGF2 surface cysteines as either chemical alkylation or substitution with alanines impairs these processes. We further demonstrate that the FGF2 variant forms lacking the two surface cysteines are not secreted from cells. These findings were corroborated by experiments redirecting a signal-peptide-containing FGF family member from the endoplasmic reticulum/Golgi-dependent secretory pathway into the unconventional secretory pathway of FGF2. Cis elements known to be required for unconventional secretion of FGF2, including the two surface cysteines, were transplanted into a variant form of FGF4 without signal peptide. The resulting FGF4/2 hybrid protein was secreted by unconventional means. We propose that the formation of disulfide bridges drives membrane insertion of FGF2 oligomers as intermediates in unconventional secretion of FGF2.  相似文献   

12.
In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the secretory production of heterologous proteins via the Sec system. In this study, the potential for Tat-dependent heterologous protein secretion was compared in the three Gram-positive bacteria Staphylococcus carnosus, Bacillus subtilis, and Corynebacterium glutamicum using green fluorescent protein (GFP) as a model protein. In all three microorganisms, fusion of a Tat signal peptide to GFP resulted in its Tat-dependent translocation across the corresponding cytoplasmic membranes. However, striking differences with respect to the final localization and folding status of the exported GFP were observed. In S. carnosus, GFP was trapped entirely in the cell wall and not released into the supernatant. In B. subtilis, GFP was secreted into the supernatant, however, in an inactive form. In contrast, C. glutamicum effectively secreted active GFP. Our results clearly demonstrate that a comparative evaluation of different Gram-positive host microorganisms is a crucial step on the way to an efficient Tat-mediated secretory production process for a desired heterologous target protein. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper is dedicated to Hermann Sahm on the occasion of his 65th birthday.  相似文献   

13.
Fibroblast Growth Factor 2 (FGF2) is a potent cell survival factor involved in tumour‐induced angiogenesis. FGF2 is secreted from cells through an unconventional secretory mechanism based upon direct translocation across the plasma membrane. The molecular mechanism underlying this process depends on a surprisingly small set of trans‐acting factors that are physically associated with the plasma membrane. FGF2 membrane translocation is mediated by the ability of FGF2 to oligomerise and to insert into the plasma membrane in a PI(4,5)P2‐dependent manner. Membrane‐inserted FGF2 oligomers are dynamic translocation intermediates that are disassembled at the extracellular leaflet mediated by membrane proximal heparan sulphate proteoglycans. This process results in the exposure of FGF2 on cell surfaces as part of its unconventional mechanism of secretion. Although the trans‐acting factors and cis‐elements in FGF2 required for unconventional secretion have been known for a while, the core mechanism of this mysterious process has now been reconstituted with purified components establishing the molecular basis of FGF2 secretion from tumour cells.  相似文献   

14.
15.
For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs.  相似文献   

16.
Classical secretion consists of the delivery of transmembrane and soluble proteins to the plasma membrane and the extracellular medium, respectively, and is mediated by the organelles of the secretory pathway, the Endoplasmic Reticulum (ER), the ER exit sites, and the Golgi, as described by the Nobel Prize winner George Palade ( Palade 1975). At the center of this transport route, the Golgi stack has a major role in modifying, processing, sorting, and dispatching newly synthesized proteins to their final destinations. More recently, however, it has become clear that an increasing number of transmembrane proteins reach the plasma membrane unconventionally, either by exiting the ER in non-COPII vesicles or by bypassing the Golgi. Here, we discuss the evidence for Golgi bypass and the possible physiological benefits of it. Intriguingly, at least during Drosophila development, Golgi bypass seems to be mediated by a Golgi protein, dGRASP, which is found ectopically localized to the plasma membrane.The secretion of signal peptide-containing and transmembrane proteins through the cellular organelles that form the secretory pathway has been very well characterized over the years (Rothman 1994; Lee et al. 2004). During their translation, signal peptide-containing proteins are specifically recognized in the cytoplasm by the signal recognition particle and localize to the ER by virtue of the SRP binding its receptor (Nagai et al. 2003; Osborne et al. 2005). Other transmembrane proteins are embedded in the ER membrane by a posttranslational mechanism called C-tail anchoring by the GET complex (Schuldiner et al. 2008). Following transfer into or across the ER membrane, nascent proteins undergo folding, oligomerization, and addition of oligosaccharide chains followed by exit via specialized landmarks, known as ER exit sites (ERES) in mammalian cells and transitional ER (tER) sites in yeast and Drosophila. Both sites are characterized by the presence of cargo-containing coat protein complex II (COPII)-coated vesicles (Bonifacino and Glick 2004; Lee et al. 2004). Thereafter, most proteins are transported through the Golgi (in a manner that is still very much debated) before reaching their final destination, such as the plasma membrane for many transmembrane proteins and the extracellular medium for secreted proteins (Mellman and Warren 2000) (Fig. 1, red arrows).Open in a separate windowFigure 1.Classical trafficking, from the ER to the Golgi to the plasma membrane, is represented by the red arrows. A cargo protein can exit from an ERES in close proximity to the cis-Golgi (route 1a) or a peripheral ERES (route 1b), but irrespective of its ER exit, this protein follows a distinct pathway through the Golgi to the plasma membrane. This pathway is dependent on known SNARE proteins, NSF and SNAPs. As proteins pass from the ER and through the Golgi, their ER-derived high mannose oligosaccharides are modified by addition of complex sugars rendering these proteins EndoH-resistant. BFA treatment or loss of function of intra-Golgi SNAREs would lead to the retention of these proteins in the ER or Golgi and their diminished presence at the plasma membrane.Potential routes for Golgi bypass are represented by blue arrows. Like classical cargo proteins, Golgi bypass cargoes may exit from an ERES near the cis-Golgi (routes 2a,c) or a peripheral ERES (route 2b). However, the immediate fate of these proteins deviates from the classical pathway. A protein following route 2a (from an ERES near the cis-Golgi) or 2b (from a peripheral ERES) would traffic on ER-derived transport intermediates directly to the plasma membrane, routes perhaps taken by CD45 or αPS1. This route would require a specific set of SNAREs, yet to be identified. As these proteins do not pass through the Golgi stack, their high mannose N-glycans remain sensitive to EndoH. These pathways are also revealed by blocking passage through the Golgi either by the application of BFA, or by the loss of function of intra-Golgi SNAREs, (e.g., Syntaxin 5), and observing their continued transport to the plasma membrane. Proteins that follow route 2c would bypass the Golgi stack via an endosomal intermediate, which would facilitate their delivery to the plasma membrane via conventional endosomal fusion machinery. In the case of CFTR, its exit from the ER may occur from either ERES location to the TGN or endosomes. If it is directly delivered to endosomes, it is likely recycled back to the TGN in which the observed oligosaccharide modifications take place before reaching the plasma membrane.More recently, however, several examples of protein trafficking that deviate from this dogma have been discovered. First, an increasing number of cytoplasmic proteins (such as IL-1β, FGF2, MIF, and AcbA/Acb1) that do not harbor a signal peptide are found in the extracellular medium, and these display a wide range of critical activities. This “cytoplasmic protein unconventional secretion” has been extensively discussed elsewhere (Nickel and Seedorf 2008; Nickel and Rabouille 2009) and will not be covered in this volume, except for a brief note toward the end. Second, a small subset of proteins does not exit the ER by virtue of classical COPII-coated vesicles. Third, a few transmembrane proteins have been shown to reach the plasma membrane, bypassing the Golgi, which is the focus of this article.Why some proteins follow an unconventional route of secretion is intriguing but on the whole largely unknown. Through evolution, the cell has segregated processes within membrane compartments to maintain and optimize cellular functions. Why would mechanisms evolve to traffic a subset of proteins via unconventional routes? In this article, we discuss examples of Golgi bypass as well as outline why and how some proteins escape the conventional secretory pathway.  相似文献   

17.
The vast majority of extracellular proteins are exported from mammalian cells by the endoplasmic reticulum/Golgi-dependent secretory pathway. For poorly understood reasons, however, a heterogenous group of extracellular proteins has been discovered that does not make use of signal peptide-dependent secretory transport. Both the release mechanisms and the molecular identity of the secretory machines involved have remained elusive. Recent studies now have established a subgroup of unconventional secretory proteins capable of translocating from the cytoplasm directly across the plasma membrane to get access to the exterior of eukaryotic cells. This review aims to focus on a detailed comparison of the subcellular site of membrane translocation of various unconventional secretory proteins such as the proangiogenic molecule fibroblast growth factor-2 (FGF-2) and Leishmania hydrophilic acylated surface protein B (HASP B). A potential link between membrane translocation and quality control as an integral part of unconventional secretory processes is discussed.  相似文献   

18.
Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes   总被引:1,自引:0,他引:1  
Whereas lysosome-related organelles (LRO) of specialized cells display both exocytic and endocytic features, lysosomes in nonspecialized cells can also acquire the property to fuse with the plasma membrane upon an acute rise in cytosolic calcium. Here, we characterize this unconventional secretory pathway in fibroblast-like cells, by monitoring the appearance of Lamp1 on the plasma membrane and the release of lysosomal enzymes into the medium. After sequential ablation of endocytic compartments in living cells, we find that donor membranes primarily derive from a late compartment, but that an early compartment is also involved. Strikingly, this endo-secretory process is not affected by treatments that inhibit endosome dynamics (microtubule depolymerization, cholesterol accumulation, overexpression of Rab7 or its effector Rab-interacting lysosomal protein [RILP], overexpression of Rab5 mutants), but depends on Rab27a, a GTPase involved in LRO secretion, and is controlled by F-actin. Moreover, we find that this unconventional endo-secretory pathway requires the adaptor protein complexes AP1, Gadkin (which recruits AP1 by binding to the γ1 subunit), and AP2, but not AP3. We conclude that a specific fraction of the AP2-derived endocytic pathway is dedicated to secretory purposes under the control of AP1 and Gadkin.  相似文献   

19.
The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis.  相似文献   

20.
Unconventional secretory proteins represent a subpopulation of extracellular factors that are exported from eukaryotic cells by mechanisms that do not depend on the endoplasmic reticulum and the Golgi complex. Various pathways have been implicated in unconventional secretion including those involving intracellular membrane-bound intermediates and others that are based on direct protein translocation across plasma membranes. Interleukin 1β (IL1β) and fibroblast growth factor 2 (FGF2) are classical examples of unconventional secretory proteins with IL1β believed to be present in intracellular vesicles prior to secretion. By contrast, FGF2 represents an example of a non-vesicular mechanism of unconventional secretion. Here, the author discusses the current knowledge about the molecular machinery being involved in FGF2 secretion. To reveal both differential and common requirements, this review further aims at a comprehensive comparison of this mechanism with other unconventional secretory processes. In particular, a potentially general role of tyrosine phosphorylation as a regulatory signal in unconventional protein secretion will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号