首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell–substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotide exchange factor (GEF)-H1 activates RhoA when released from microtubules to initiate a RhoA/Rho kinase/myosin light chain signaling pathway that regulates cellular contractility. However, the contributions of activated GEF-H1 to coordination of cytoskeletal dynamics during cell migration are unknown. We show that small interfering RNA-induced GEF-H1 depletion leads to decreased HeLa cell directional migration due to the loss of the Rho exchange activity of GEF-H1. Analysis of RhoA activity by using a live cell biosensor revealed that GEF-H1 controls localized activation of RhoA at the leading edge. The loss of GEF-H1 is associated with altered leading edge actin dynamics, as well as increased focal adhesion lifetimes. Tyrosine phosphorylation of focal adhesion kinase and paxillin at residues critical for the regulation of focal adhesion dynamics was diminished in the absence of GEF-H1/RhoA signaling. This study establishes GEF-H1 as a critical organizer of key structural and signaling components of cell migration through the localized regulation of RhoA activity at the cell leading edge.  相似文献   

3.
Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β‐PIX (PAK‐interacting exchange factor‐β). In H1299 cells, β‐PIX's activity was found not to be down‐regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β‐PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β‐PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β‐PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.  相似文献   

4.
The balance of transition between distinct adhesion types contributes to the regulation of mesenchymal cell migration, and the characteristic association of adhesions with actin filaments led us to question the role of actin filament-associating proteins in the transition between adhesive states. Tropomyosin isoform association with actin filaments imparts distinct filament structures, and we have thus investigated the role for tropomyosins in determining the formation of distinct adhesion structures. Using combinations of overexpression, knockdown, and knockout approaches, we establish that Tm5NM1 preferentially stabilizes focal adhesions and drives the transition to fibrillar adhesions via stabilization of actin filaments. Moreover, our data suggest that the expression of Tm5NM1 is a critical determinant of paxillin phosphorylation, a signaling event that is necessary for focal adhesion disassembly. Thus, we propose that Tm5NM1 can regulate the feedback loop between focal adhesion disassembly and focal complex formation at the leading edge that is required for productive and directed cell movement.Among the different modes of migration that cells adopt, mesenchymal cell migration is dependent on integrin-based adhesion to the extracellular matrix (14), and the cellular mechanisms regulating integrin adhesion formation and turnover (adhesion dynamics) are integral to this process. The fate of integrin adhesions is intimately linked with filaments of polymerized actin (4). At the molecular level, actin filaments are highly dynamic, and this aspect of actin polymer biology provides an important control mechanism by which cells can organize filaments into structures with distinct properties. Tropomyosins are a multi-isoform family of actin-associating proteins that confer isoform-specific regulation of diverse actin filaments (3, 16, 34, 35). The interdependence of integrin adhesions and actin filaments suggests that expression of actin-associated proteins such as the tropomyosins may represent a mechanism for the regulation of adhesion dynamics that determine cell migration.In migrating cells small integrin-based focal complexes form at the periphery of lamellipodial extensions (32). These complexes are characterized by their subcellular distribution, dot-like shape, dependence on Rac activity, phosphorylated paxillin, and association with the network of short, branched actin filaments at the leading edge. The focal complexes are short lived (43) but provide strong traction forces at the leading edge (2) and most likely regulate directional migration (19). Subsets of focal complexes mature into focal adhesions, structures characterized by: Rho GTPase and Rho kinase dependence, dash-like shape, high levels of paxillin and phosphorylated paxillin, and low levels of the actin-binding molecule tensin (43, 44). The focal adhesions play an important role in anchoring bundles of polymerized actin stress fibers, providing the contractile force necessary for the translocation of the cell body during migration. There are at least three distinct classes of stress fibers observed in migrating cells (20, 27). Dorsal stress fibers are inserted into focal adhesions at the ventral surface of the cell. The distal end of the dorsal fibers can associate with a second type of actin fiber, the transverse arcs that run parallel to the leading edge and are not directly connected to focal adhesions. Ventral stress fibers have focal adhesions at either end and can be established following the contraction of two dorsal stress fibers and the associated transverse arc to form one actin bundle (20).Increased ventral stress fibers and focal adhesions are characteristic of nonmotile cells, in contrast, cell migration depends on focal adhesion turnover at the leading edge, allowing the formation of newly protruding regions of membrane and focal complex formation (28, 39). While the precise mechanism of focal adhesion turnover is incompletely understood, activation and phosphorylation of Src kinase, p130Cas, and paxillin (13, 39, 45) have all been implicated in focal adhesion turnover. A biphasic relationship between cell adhesion and cell speed suggests that conditions that alter the turnover rate of focal adhesions (either too much or too little) can reduce cell speed (18, 22).In cells with a fibroblastic phenotype, increased levels of acto-myosin contractility promote focal adhesion transition to fibrillar adhesions (also known as ECM contacts) (6, 7): elongated, thin, central arrays of dots or elongated fibrils that characteristically contain tensin but low levels of phosphorylated paxillin (29, 44, 45) and bind fibrils of fibronectin parallel to actin bundles (23, 29). These adhesions are formed by ligand-occupied fibronectin integrin receptor translocation from focal adhesions along bundles of actin filaments toward the cell center, and the process is dependent on an intact actin cytoskeleton and myosin activity (29). Receptor translocation stimulates matrix reorganization by transmitting cytoskeleton-generated tension through the integrin receptors onto the surrounding matrix (25, 29). The rate of receptor translocation is apparently independent from the rate of cell migration (29). However, the cytoskeletal tension that causes the fibrillar adhesion formation is also reported to decrease paxillin phosphorylation (45). Since phosphorylated paxillin is required for the generation of new focal complexes (45), conditions which switch the balance of adhesion in favor of fibrillar adhesion should presumably result in significantly reduced paxillin phosphorylation, leading to reduced focal adhesion turnover and correspondingly decreased cell migration.The cytoskeletal tropomyosin Tm5NM1 is a broadly distributed isoform (37) that alters cell shape (34), localizes to and promotes stress fibers that are resistant to actin depolymerizing drugs (9), enhances myosin IIA activation and recruitment to stress fibers, and inhibits cell migration (3). Therefore, we hypothesized that Tm5NM1 expression might determine cell migration by coordinating actin-dependent transition toward a predominance of focal adhesions and fibrillar adhesions. Using overexpression, knockdown, and genetic knockout models, we demonstrate that Tm5NM1 inhibits cell migration by promoting selective stabilization of focal adhesions and transition to fibrillar adhesions via the regulation of paxillin phosphorylation.  相似文献   

5.
Actin filament dynamics at the cell membrane are important for cell-matrix and cell-cell adhesions and the protrusion of the leading edge. Since actin filaments must be connected to the cell membrane to exert forces but must also detach from the membrane to allow it to move and evolve, the balance between actin filament tethering and detachment at adhesion sites and the leading edge is key for cell shape changes and motility. How this fine tuning is performed in cells remains an open question, but possible candidates are the Drosophila enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, which localize to dynamic actin structures in the cell. Here we study VASP-mediated actin-related proteins 2/3 (Arp2/3) complex-dependent actin dynamics using a substrate that mimics the fluid properties of the cell membrane: an oil-water interface. We show evidence that polymerization activators undergo diffusion and convection on the fluid surface, due to continual attachment and detachment to the actin network. These dynamics are enhanced in the presence of VASP, and we observe cycles of catastrophic detachment of the actin network from the surface, resulting in stop-and-go motion. These results point to a role for VASP in the modulation of filament anchoring, with implications for actin dynamics at cell adhesions and at the leading edge of the cell.  相似文献   

6.
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model’s ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.  相似文献   

7.
Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.  相似文献   

8.
The effect of the suppression of expression of the actin-binding protein caldesmon on the motility of nonmuscle cells has been studied. A more than a fivefold decrease in the content of this protein in cells by RNA interference led to the disturbance of the formation of actin stress fibers and acceleration of cell migration to the zone of injury of the monolayer. A stimulation of stationary cells by serum induced more than 1,5-fold accumulation of stress fibers only in control cells, but not in caldesmon-deficient cells. Similarly, the accumulation of actin filaments was observed in actively migrating cells of only wild type, but not in the cells with low caldesmon content. These changes occurred mainly at the leading edge of the migrating cell where the distinct structure of actin filaments was not seen in the absence of caldesmon. It was assumed that caldesmon inhibits cell migration due to the stabilization of actin in filaments and a decrease in the dynamics of monomeric actin at the leading edge of the migrating cell.  相似文献   

9.
In migrating cells, actin polymerization promotes protrusion of the leading edge, whereas actomyosin contractility powers net cell body translocation. Although they promote F-actin-dependent protrusions of the cell periphery upon adhesion to fibronectin (FN), Abl family kinases inhibit cell migration on FN. We provide evidence here that the Abl-related gene (Arg/Abl2) kinase inhibits fibroblast migration by attenuating actomyosin contractility and regulating focal adhesion dynamics. arg-/- fibroblasts migrate at faster average speeds than wild-type (wt) cells, whereas Arg re-expression in these cells slows migration. Surprisingly, the faster migrating arg-/- fibroblasts have more prominent F-actin stress fibers and focal adhesions and exhibit increased actomyosin contractility relative to wt cells. Interestingly, Arg requires distinct functional domains to inhibit focal adhesions and actomyosin contractility. The kinase domain-containing Arg N-terminal half can act through the RhoA inhibitor p190RhoGAP to attenuate stress fiber formation and cell contractility. However, Arg requires both its kinase activity and its cytoskeleton-binding C-terminal half to fully inhibit focal adhesions. Although focal adhesions do not turn over efficiently in the trailing edge of arg-/- cells, the increased contractility of arg-/- cells tears the adhesions from the substrate, allowing for the faster migration observed in these cells. Together, our data strongly suggest that Arg inhibits cell migration by restricting actomyosin contractility and regulating its coupling to the substrate through focal adhesions.  相似文献   

10.
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.  相似文献   

11.
Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.  相似文献   

12.
13.
Cell migration is regulated by the action of many signaling pathways that are activated in specific regions of migrating cells. Extracellular regulated kinase 1/2 (ERK) signaling can modulate the migration of cells by controlling the turnover of focal adhesions and the dynamics of actin polymerization. Focal adhesion turnover is necessary for cell migration, and the formation of strong actin stress fibers and mature focal adhesions puts the brakes on cell migration. We used F9 wild-type and vinculin null (vin-/-) parietal endoderm (PE) outgrowth to study the role of the ERK signaling pathway in cell migration. Upon plating of F9 embryoid bodies (EBs) onto laminin-coated dishes, PE cells migrate away from the EBs, providing an in vitro model for studying directed migration of this embryonic cell type. Our results suggest that the ERK pathway regulates PE cell migration by affecting the formation of focal adhesions and lamellipodia through the action of myosin light chain kinase (MLCK).  相似文献   

14.
Mesenchymal cell migration is important for embryogenesis and tissue regeneration. In addition, it has been implicated in pathological conditions such as the dissemination of cancer cells. A characteristic of mesenchymal-migrating cells is the presence of actin stress fibres, which are thought to mediate myosin II-based contractility in close cooperation with associated focal adhesions. Myosin II-based contractility regulates various cellular activities, which occur in a spatial and temporal manner to achieve directional cell migration. These myosin II-based activities involve the maturation of integrin-based adhesions, generation of traction forces, establishment of the front-to-back polarity axis, retraction of the trailing edge, extracellular matrix remodelling and mechanotransduction. Growing evidence suggests that actin stress fibre subtypes, namely dorsal stress fibres, transverse arcs and ventral stress fibres, could provide this spatial and temporal myosin II-based activity. Consistent with their functional differences, recent studies have demonstrated that the molecular composition of actin stress fibre subtypes differ significantly. This present review focuses on the current view of the molecular composition of actin stress fibre subtypes and how these fibre subtypes regulate mesenchymal cell migration.  相似文献   

15.
Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal-regulated kinase-mitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate that ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 regulatory complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show that ERK colocalizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration.  相似文献   

16.
Motile cells transduce environmental chemical signals into mechanical forces to achieve properly controlled migration. This signal–force transduction is thought to require regulated mechanical coupling between actin filaments (F-actins), which undergo retrograde flow at the cellular leading edge, and cell adhesions via linker “clutch” molecules. However, the molecular machinery mediating this regulatory coupling remains unclear. Here we show that the F-actin binding molecule cortactin directly interacts with a clutch molecule, shootin1, in axonal growth cones, thereby mediating the linkage between F-actin retrograde flow and cell adhesions through L1-CAM. Shootin1–cortactin interaction was enhanced by shootin1 phosphorylation by Pak1, which is activated by the axonal chemoattractant netrin-1. We provide evidence that shootin1–cortactin interaction participates in netrin-1–induced F-actin adhesion coupling and in the promotion of traction forces for axon outgrowth. Under cell signaling, this regulatory F-actin adhesion coupling in growth cones cooperates with actin polymerization for efficient cellular motility.  相似文献   

17.
Orderly cell migration is essential for embryonic development, efficient wound healing and a functioning immune system and the dysregulation of this process leads to a number of pathologies. The speed and direction of cell migration is critically dependent on the structural organization of focal adhesions in the cell. While it is well established that contractile forces derived from the acto-myosin filaments control the structure and growth of focal adhesions, how this may be modulated to give different outcomes for speed and persistence is not well understood. The tropomyosin family of actin-associating proteins are emerging as important modulators of the contractile nature of associated actin filaments. The multiple non-muscle tropomyosin isoforms are differentially expressed between tissues and across development and are thought to be major regulators of actin filament functional specialization. In the present study we have investigated the effects of two splice variant isoforms from the same α-tropomyosin gene, TmBr1 and TmBr3, on focal adhesion structure and parameters of cell migration. These isoforms are normally switched on in neuronal cells during differentiation and we find that exogenous expression of the two isoforms in undifferentiated neuronal cells has discrete effects on cell migration parameters. While both isoforms cause reduced focal adhesion size and cell migration speed, they differentially effect actin filament phenotypes and migration persistence. Our data suggests that differential expression of tropomyosin isoforms may coordinate acto-myosin contractility and focal adhesion structure to modulate cell speed and persistence.Key words: focal adhesion, tropomyosin, actin, migration, persistence, speed, mesenchymal  相似文献   

18.
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.  相似文献   

19.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.  相似文献   

20.
Cell migration involves complex physical and chemical interactions with the substrate. To probe the mechanical interactions under different regions of migrating 3T3 fibroblasts, we have disrupted cell-substrate adhesions by local application of the GRGDTP peptide, while imaging stress distribution on the substrate with traction force microscopy. Both spontaneous and GRGDTP-induced detachment of the trailing edge caused extensive cell shortening, without changing the overall level of traction forces or the direction of migration. In contrast, disruption of frontal adhesions caused dramatic, global loss of traction forces before any significant shortening of the cell. Although traction forces and cell migration recovered within 10-20 min of transient frontal treatment, persistent treatment with GRGDTP caused the cell to develop traction forces elsewhere and reorient toward a new direction. We conclude that contractile forces of a fibroblast are transmitted to the substrate through two distinct types of adhesions. Leading edge adhesions are unique in their ability to transmit active propulsive forces. Their functions cannot be transferred directly to existing adhesions upon detachment. Trailing end adhesions create passive resistance during cell migration and readily redistribute their loads upon detachment. Our results indicate the distinct nature of mechanical interactions at the leading versus trailing edges, which together generate the mechanical interactions for fibroblast migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号