首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rb independent inhibition of cell growth by p15(INK4B).   总被引:2,自引:0,他引:2  
The INK4 cyclin dependent kinase inhibitors (CDKI), such as p15(INK4B) and p16(INK4A), block cell cycle progression from G to S phase. This is mediated by inhibition of phosphorylation of proteins, including the retinoblastoma susceptibility protein (Rb), by cyclin dependent kinases. Ectopic over-expression of the p16(INK4A) CDKI can inhibit growth of cell lines depending on Rb status. Cell lines lacking Rb, with few exceptions, are resistant to growth inhibition by p16(INK4A). The effects of ectopic over-expression of p15(INK4B) in cell lines with and without wild type Rb were examined by measuring cell recovery. Proliferation was inhibited in cells lacking Rb as well as in cells with wild type Rb expression. Experiments analyzing the effectiveness of chimeric p15(INK4B)/p16(INK4A) proteins indicated that the Rb independent growth inhibition required N-terminal residues of p15(INK4B). Linker insertion mutation of p15(INK4B) showed that the inhibition was dependent on intact ankyrin structures. Double staining flow cytometry found that the growth inhibition correlated with a decrease in cells in G2/M phases of the cell cycle. These findings are consistent with Rb independent inhibition of the progression from G1 to S caused by overexpression of p15(INK4B).  相似文献   

2.
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.  相似文献   

3.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

4.
TGF-beta1 modulation of cell cycle components was assessed in an experimental model in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary tumors in Balb/c mice. TGF-beta1 inhibited both MPA-induced proliferation of progestin-dependent C4HD epithelial cells and proliferation of the progestin-independent variant cell type C4HI, arresting cells in G(1) phase of the cell cycle. Progestin-independent 60 epithelial cells evidenced reduced response to TGF-beta1 antiproliferative effects. TGF-beta1 inhibition of cyclins D1 and A expression and up-regulation of p21(CIP1) levels were the common findings in all three cell types. In addition, a significant content reduction of cyclin D1/cdk4 and cyclin A/cdk2 complexes was found after TGF-beta1 inhibition of MPA-dependent and -independent proliferation. TGF-beta1 inhibited cyclin D2 expression and up-regulated p27(KIP1) levels only when acting as inhibitor of MPA-induced proliferation of C4HD cells. Regulation of these two cell cycle components resulted in decreased cyclin D2/cdk2 complex and in increased p27(KIP1) association with cdk2 in C4HD cells treated with TGF-beta1. These two molecular mechanisms, unobserved in progestin-independent growth of C4HI or 60 cells, were associated with a significantly higher degree of inhibition of cdk2 kinase activity in C4HD cells compared to that found in TGF-beta-treated C4HI or 60 cells. Reduced sensitivity of 60 cells to the growth-inhibitory effects of TGF-beta1 correlated with significantly lower levels of p15(INK4B), p21(CIP1), and p27(KIP1) expressed in these cells, compared to the levels present in C4HD or C4HI cells, and correlated as well with lack of expression of p16(INK4). Thus, common targets were found to exist in TGF-beta1 inhibitory action on breast cancer cells, but regulation of specific targets was found when TGF-beta1-inhibited proliferation driven by the progesterone receptor.  相似文献   

5.
Mammary cancer is among the most frequently observed canine tumors in unspayed female dogs resulting in death due to metastatic disease. These tumors are excellent models of human breast cancer but until recently there was only anecdotal evidence regarding underlying genetic defects. We recently reported expression defects in the cyclin‐dependent kinase p21/Cip1 and p53 among three independent canine mammary tumor (CMT) cell lines derived from spontaneous canine mammary cancers. We investigated further defects in the same three cell lines focusing on additional tumor suppressor gene defects in cyclin‐dependent kinase inhibitors. p27/KIP1 appeared normally expressed and did not appear to encode inactivating mutations. In contrast, expression of p16/INK4A was defective/absent in two cell lines and normal/slightly induced in the third cell line. To determine if defects were causative in maintaining the transformed phenotype, a p16/INK4A transgene was permanently transfected followed by selection and single cell cloning. CMT/p16 clones were characterized for transgene expression, p16 protein content and phenotype including proliferation rate, cell cycle phase distribution, contact inhibition, substrate dependent cell growth and cell morphology. All cell lines appeared unique yet clear indications of phenotype rescue due to p16/INK4A transgene complementation were observed suggesting that defects in p16 expression were present in all three. In some cases cellular senescence also appeared to be induced. These data provide evidence supporting p16/INK4A mutations as causative defects promoting transformation in canine mammary cancer and further characterizes tumor suppressor gene defects with functional consequences in these cells supporting their application as spontaneous animal models of human disease. J. Cell. Biochem. 106: 491–505, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Cell cycle regulators in bladder cancer: relationship to schistosomiasis   总被引:1,自引:0,他引:1  
Dysregulation of cell cycle control may lead to genomic instability, neoplastic transformation and tumor progression. In terms of the particular roles in regulation of the cell-cycle, p21(WAF1) causes growth arrest through inhibition of cyclin-dependant kinases required for G1/S transition. P16 (INK4A) and p15 (INK4B) are thought to act as tumor suppressors, since their inactivation and/or deletion are observable in various types of malignancies. Cyclin D1 is hypothesized to control cell cycle progression through the G1-S check point. The present study evaluated p21 expression, p16 and p15 gene deletion and cylin D1 expression in bladder carcinoma among Egyptian patients, in relation to different clinicopathological features of the tumors and presence or absence of bilharziasis. Tissue specimens were obtained from 132 patients with bladder carcinoma and 50 normal tissue samples from the same patients served as control. P21 was determined by Western blot (WB) and enzyme immunoassay (EIA), p16 and p15 gene deletions were examined by polymerase chain reaction (PCR) and Cyclin D1 was detected by WB. Levels of p21 were lower in malignant tumors than in normal tissues. Lower expression of p21 was evident in lymph node positive, well differentiated tumors and squamous cell carcinoma (SCC) than in lymph node negative, poorly differentiated tumors and transitional cell carcinoma (TCC). In all normal samples, p15 and p16 genes were detected while cyclin D1 was not detected. P16 and p15 genes were deleted in 38.7% (41/106) and 30.2% (32/106) of bladder tumors respectively. The deletion of both genes was associated with poor differentiation grade and presence of bilharziasis. P16 deletion was also correlated to advancing tumor stage. Cyclin D1 was expressed in 57.5% of bladder tumors (69/120), where its expression was correlated to early stage, well differentiation grade, schistomiasis, and low levels of p21. Cell cycle is dysregulated in bladder carcinoma. This was evident from the increased expression of cyclin D1, the decreased levels of p21 and the deletion of p15 and p16 genes. Moreover, p16 and p15 gene deletion was related to tumor progression and might have a role in bilharzial bladder carcinogenesis. Cyclin D1 over-expression appears to be an early event in bladder cancer and might explain bilharzial associated bladder carcinogenesis.  相似文献   

8.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

9.
Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.  相似文献   

10.
11.
12.
The physiology of p16INK4A-mediated G1 proliferative arrest   总被引:11,自引:0,他引:11  
Phosphorylation of the product of the retinoblastoma susceptibility gene (Rb) physiologically inactivates its growth-suppressive properties. Rb phosphorylation is mediated by cyclin-dependent kinases (CDKs), whose activity is enhanced by cyclins and inhibited by CDK inhibitors. p16INK4A is a member of a family of inhibitors specific for CDK4 and CDK6. p16INK4A is deleted and inactivated in a wide variety of human malignancies, including familial melanomas and pancreatic carcinoma syndromes, indicating that it is an authentic human tumor suppressor. Although one mechanism for its tumor suppression may be prevention of Rb phosphorylation, thereby causing G1 arrest, many normal cell types express p16INK4A, and are still able to traverse the cell cycle. In a search for other mechanisms, we have found that p16INK4A is required for p53-independent G1 arrest in response to DNA-damaging agents, including topoisomerase I and II inhibitors. Thus, like other tumor suppressors, p16INK4A plays an essential role in a DNA-damage checkpoint that leads to cell cycle arrest.  相似文献   

13.
INK4d-deficient mice are fertile despite testicular atrophy   总被引:4,自引:0,他引:4       下载免费PDF全文
The INK4 family of cyclin-dependent kinase (CDK) inhibitors includes four 15- to 19-kDa polypeptides (p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d)) that bind to CDK4 and CDK6. By disrupting cyclin D-dependent holoenzymes, INK4 proteins prevent phosphorylation of the retinoblastoma protein and block entry into the DNA-synthetic phase of the cell division cycle. The founding family member, p16(INK4a), is a potent tumor suppressor in humans, whereas involvement, if any, of other INK4 proteins in tumor surveillance is less well documented. INK4c and INK4d are expressed during mouse embryogenesis in stereotypic tissue-specific patterns and are also detected, together with INK4b, in tissues of young mice. INK4a is expressed neither before birth nor at readily appreciable levels in young animals, but its increased expression later in life suggests that it plays some checkpoint function in response to cell stress, genotoxic damage, or aging per se. We used targeted gene disruption to generate mice lacking INK4d. These animals developed into adulthood, had a normal life span, and did not spontaneously develop tumors. Tumors did not arise at increased frequency in animals neonatally exposed to ionizing radiation or the carcinogen dimethylbenzanthrene. Mouse embryo fibroblasts, bone marrow-derived macrophages, and lymphoid T and B cells isolated from these animals proliferated normally and displayed typical lineage-specific differentiation markers. Males exhibited marked testicular atrophy associated with increased apoptosis of germ cells, although they remained fertile. The absence of tumors in INK4d-deficient animals demonstrates that, unlike INK4a, INK4d is not a tumor suppressor but is instead involved in spermatogenesis.  相似文献   

14.
15.
16.
Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G(1)/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16(INK4a) to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16(INK4a) inhibited G(1)/S transition induced in MCF-7 cells by 17-beta-estradiol (E(2)) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G(1) and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21(Cip1) and p27(Kip1) was decreased, however, in both control and p16(INK4a)-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E(2) in control and p16(INK4a)-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16(INK4a). Inhibition of Cdc25A activity in p16(INK4a)-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E(2)-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisense CDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16(INK4a)-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21(Cip1) and p27(Kip1).  相似文献   

17.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

18.
Homozygous deletions in the region of chromosome 9p21 are frequent in human melanoma. Mutations in the p16INK4A cyclin-dependent kinase inhibitor (CDI) gene at this locus have implicated the product of this gene as a tumor suppressor. Less attention has been focused on the homologous, closely linked p15INK4B gene. To facilitate study of the phenotypic effects of restoring expression of the latter in aggressive melanoma cells lacking INK4 expression, we inserted the cDNA encoding p15INK4B into an autonomously maintained plasmid under positive tetracycline control ('TET ON' system). Similarly regulated luciferase and herpes thymidine kinase sequences were used as controls. We demonstrate that this system enabled efficient, and reasonably uniform, induction of p15INK4B expression in a human melanoma cell line exposed to the tetracycline derivative, doxycycline. Flow cytometry showed that this induction resulted in substantial accumulation of cells in the G0/G1 phase of the cell cycle. This system will facilitate detailed analysis of the cell cycle inhibitory mechanisms of this CDI in human melanoma cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号