首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of cells to reliably fire action potentials is critically dependent upon the maintenance of a hyperpolarized resting potential, which allows voltage-gated Na+ and Ca2+ channels to recover from inactivation and open in response to a subsequent stimulus. Hodgkin and Huxley first recognized the functional importance a small, steady outward leak of K+ ions to the resting potential, action potential generation and cellular excitability, and we now appreciate the contribution of inward rectifier-type K+ channels (Kir or KCNJ channels) to this process. More recently, however, it has become evident that two-pore domain K+ (K2P) channels also contribute to the steady outward leak of K+ ions, and thus, maintenance of the resting potential. Molecular cloning efforts have demonstrated that K2P channel exist in yeast to humans, and represent a major branch in the K+ channel superfamily. Humans express 15 types of K2P channels, which are grouped into six subfamilies, based on similarities in amino acid sequence and functional properties. Although K2P channels are not voltage-gated, due to the absence of a canonical voltage sensor domain, their activity can be regulated by a variety of stimuli, including mechanical force, polyunsaturated fatty acids (PUFAs) (e.g., arachidonic acid), volatile anesthetics, acidity/pH, pharmacologic agents, heat and signaling events, such as phosphorylation and protein-protein interactions. K2P channels thus represent important regulators of cellular excitability by virtue of their impact on the resting potential, and as such, have garnered considerable attention in recent years.  相似文献   

2.
The voltage-activated K+ channels are members of an ion channel family that includes the voltage-activated Na+ and Ca2+ channels. These ion channels mediate the transmembrane ionic currents that are responsible for the electrical signals produced by cells. The recent cloning of numerous voltage-activated K+ channels has made it possible to combine molecular-genetic and biophysical methods to study K+ channel mechanisms. These mutagenesis-function studies are beginning to provide new information about the architecture of K+ channel proteins and how they form a voltage-gated, K+-selective pore.  相似文献   

3.
《Biophysical journal》2022,121(11):2206-2218
Hyperpolarization-activated cyclic-nucleotide gated channels (HCNs) are responsible for the generation of pacemaker currents (If or Ih) in cardiac and neuronal cells. Despite the overall structural similarity to voltage-gated potassium (Kv) channels, HCNs show much lower selectivity for K+ over Na+ ions. This increased permeability to Na+ is critical to their role in membrane depolarization. HCNs can also select between Na+ and Li+ ions. Here, we investigate the unique ion selectivity properties of HCNs using molecular-dynamics simulations. Our simulations suggest that the HCN1 pore is flexible and dilated compared with Kv channels with only one stable ion binding site within the selectivity filter. We also observe that ion coordination and hydration differ within the HCN1 selectivity filter compared with those in Kv and cyclic-nucleotide gated channels. Additionally, the C358T mutation further stabilizes the symmetry of the binding site and provides a more fit space for ion coordination, particularly for Li+.  相似文献   

4.
Summary The action of GRF on GH3 cell membrane was examined by patch electrode techniques. Under current clamp with patch elecrtrode, spontaneous action potentials were partially to totally eliminated by application of GRF. In the case of partial elimination, the duration of remaining spontaneous action potentials was prolonged and the amplitude of afterhyperpolarization was decreased. The evoked actiion potential in the cells which did not show spontaneous action potentials was also eliminated by GRF. In order to examine what channels were affected by GRF, voltage-clamp analysis was performed. It was revealed that voltage-gated Ca2+ channel current and Ca2+-induced K+ channels current were decreased by GRF, while voltage-gated Na+ channel and delayed K+ channel current was considered to be a consequence of he decrease of voltage-gated Ca2+ channels current. Therefore it is likely that the effect of GRF on GH3 cells was due to the block of voltage-gated Ca2+ channels. The elimination of action potential under current clamp corresponded to the block of voltage-gated Ca2+ channels and the prolongation of action potential could be explained by the decrease of Ca2+-induced K+ channel current. The amplitude decrease of afterhyperpolarization could also be explained by the reduction of Ca2+-induced K+ channel current. Thus the results under current clamp well coincide with the results under voltage clamp. Hormone secretion from GH3 cells was not stimulated by GRF. However, the finding that GRF solely blocked voltage-gated Ca2+ channel suggested the specific action of GRF on GH3 cell membranes.  相似文献   

5.
K+ channel gating currents are usually measured in the absence of permeating ions, when a common feature of channel closing is a rising phase of off-gating current and slow subsequent decay. Current models of gating invoke a concerted rearrangement of subunits just before the open state to explain this very slow charge return from opening potentials. We have measured gating currents from the voltage-gated K+ channel, Kv1.5, highly overexpressed in human embryonic kidney cells. In the presence of permeating K+ or Cs+, we show, by comparison with data obtained in the absence of permeant ions, that there is a rapid return of charge after depolarizations. Measurement of off-gating currents on repolarization before and after K+ dialysis from cells allowed a comparison of off-gating current amplitudes and time course in the same cells. Parallel experiments utilizing the low permeability of Cs+ through Kv1.5 revealed similar rapid charge return during measurements of off-gating currents at ECs. Such effects could not be reproduced in a nonconducting mutant (W472F) of Kv1.5, in which, by definition, ion permeation was macroscopically absent. This preservation of a fast kinetic structure of off-gating currents on return from potentials at which channels open suggests an allosteric modulation by permeant cations. This may arise from a direct action on a slow step late in the activation pathway, or via a retardation in the rate of C-type inactivation. The activation energy barrier for K+ channel closing is reduced, which may be important during repetitive action potential spiking where ion channels characteristically undergo continuous cyclical activation and deactivation.  相似文献   

6.
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.  相似文献   

7.
Epithelial cell migration plays an important role in gastrointestinal mucosal repair. We previously reported that multiple functional ion channels, including a Ba2+-sensitive K+ inward rectifier Kir1.2, 4-aminopyridine (4-AP)-sensitive voltage-gated K+ channels Kv1.1, Kv1.6 and Kv2.1, and a nifedipine-sensitive, tetrodotoxin (TTX)-insensitive voltage-gated Na+ channel Nav1.5 were expressed in a non-transformed rat gastric epithelial cell line (RGM-1). In the present study, we further investigated whether these ion channels are involved in the modulation of gastric epithelial cell migration. Cell migration was determined by monolayer wound healing assay. Results showed that blockade of Kv with 4-AP or Nav1.5 with nifedipine inhibited RGM-1 cell migration in the absence or presence of epidermal growth factor (EGF), which effectively stimulated RGM-1 cell migration. Moreover, high concentration of TTX mimicked the action of nifedipine, suggesting that the action of nifedipine was mediated through specific blockade of Nav1.5. In contrast, inhibition of Kir1.2 with Ba2+, either in basal or EGF-stimulated condition, had no effect on RGM-1 cell migration. In conclusion, the present study demonstrates for the first time that voltage-gated K+ and Na+ channels are involved in the modulation of gastric epithelial cell migration.  相似文献   

8.
Summary The presence and regional localization of voltagegated ion channels on taste cells inNecturus maculosus were studied. Lingual epithelium was dissected from the animal and placed in a modified Ussing chamber such that individual taste cells could be impaled with intracellular microelectrodes and the chemical environment of the apical and basolateral membranes of cells could be strictly controlled. That is, solutions bathing the the mucosal and serosal surfaces of the epithelium could be exchanged independently and the effects of pharmacological agents could be tested selectively on the apical or basolateral membranes of taste cells. In the presence of amphibian physiological saline, action potentials were elicited by passing brief depolarizing current pulses through the recording electrode. Action potentials provided a convenient assay of voltage-gated ion channels. As in other excitable tissues, blocking current through Na+, K+, or Ca2+ channels had predictable and consistent effects on the shape and magnitude of the action potential. A series of experiments was conducted in which the shape and duration of regenerative action potentials were monitored when the ionic composition was altered and/or pharmacological blocking agents were added to the mucosal or to the serosal chamber. We have found the following: (1) voltage-gated K+ channels (delayed rectifier) are found predominately, if not exclusively, on the chemoreceptive apical membrane; (ii) voltage-gated Na+ and Ca2+ channels are found on the apical (chemoreceptive) and basolateral (synaptic) membrane; (iii) there is a K+ leak channel on the basolateral membrane which appears to vary seasonally in its sensitivity to TEA. The nonuniform distribution of voltage-gated K+ channels and their predominance on the apical membrane may be important in taste transduction: alterations in apical K+ conductance may underlie receptor potentials ellicted by rapid stimuli.  相似文献   

9.
The gap junction and voltage-gated Na+ channel play an important role in the action potential propagation. The purpose of this study was to elucidate the roles of subcellular Na+ channel distribution in action potential propagation. To achieve this, we constructed the myocardial strand model, which can calculate the current via intercellular cleft (electric-field mechanism) together with gap-junctional current (gap-junctional mechanism). We conducted simulations of action potential propagation in a myofiber model where cardiomyocytes were electrically coupled with gap junctions alone or with both the gap junctions and the electric field mechanism. Then we found that the action potential propagation was greatly affected by the subcellular distribution of Na+ channels in the presence of the electric field mechanism. The presence of Na+ channels in the lateral membrane was important to ensure the stability of propagation under conditions of reduced gap-junctional coupling. In the poorly coupled tissue with sufficient Na+ channels in the lateral membrane, the slowing of action potential propagation resulted from the periodic and intermittent dysfunction of the electric field mechanism. The changes in the subcellular Na+ channel distribution might be in part responsible for the homeostatic excitation propagation in the diseased heart.  相似文献   

10.
(i) Effects of veratridine on ionic conductances of human peripheral blood T lymphocytes have been investigated using the whole-cell patch-clamp technique, (ii) Veratridine reduces the net outward current evoked by membrane depolarizations. The reduction originates from block of a 4-aminopyridine-sensitive, voltage-gated K+ current, (iii) Human T lymphocytes do not appear to express voltage-gated Na+ channels, since inward currents are observed neither in control nor in veratridine- and bretylium-exposed lymphocytes. (iv) The effect of veratridine consists of an increase in the rate of decay of the voltage-gated K+ current and a reduction of the peak current amplitude. Both effects depend on veratridine concentration. Halfmaximum block occurs at 97 m and the time constant of decay is reduced by 50% at 54 m of veratridine. (v) Possible mechanisms of veratridine action are discussed. The increased rate of K+ current decay is most likely due to open channel block. The decrease of current amplitude may involve an additional mechanism. (vi) In cultured mouse neuroblastoma N1E-115 cells, veratridine blocks a component of voltage-gated K+ current, in addition to its effect on voltage-gated Na+ current. This result shows that the novel effect of veratridine is not confined to lymphocytes.We thank Jacobien Künzel of the Wilhelmina Hospital for Children, Utrecht, for providing the blood samples and Aart de Groot for technical assistance. The research was supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences to M. Oortgiesen.  相似文献   

11.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

12.
In leech P neurons the inhibition of the Na+-K+ pump by ouabain or omission of bath K+ leaves the membrane potential unaffected for a prolonged period or even induces a marked membrane hyperpolarization, although the concentration gradients for K+ and Na+ are attenuated substantially. As shown previously, this stabilization of the membrane potential is caused by an increase in the K+ conductance of the plasma membrane, which compensates for the reduction of the K+ gradient. The data presented here strongly suggest that the increased K+ conductance is due to Na+-activated K+ (KNa) channels. Specifically, an increase in the cytosolic Na+ concentration ([Na+]i) was paralleled by a membrane hyperpolarization, a decrease in the input resistance (Rin) of the cells, and by the occurrence of an outwardly directed membrane current. The relationship between Rin and [Na+]i followed a simple model in which the Rin decrease was attributed to K+ channels that are activated by the binding of three Na+ ions, with half-maximal activation at [Na+]i between 45 and 70 mM. At maximum channel activation, Rin was reduced by more than 90%, suggesting a significant contribution of the KNa channels to the physiological functioning of the cells, although evidence for such a contribution is still lacking. Injection experiments showed that the KNa channels in leech P neurons are also activated by Li+.  相似文献   

13.
C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-free solutions, although they show no measurable ionic currents in physiological solutions. In addition, it appears that the effective block of ion conduction produced by the mutation W434F in the pore region may be associated with permanent C-type inactivation of W434F channels. These conclusions predict that permanently C-type inactivated W434F channels would also show Na+ and Li+ currents (in K+-free solutions) with kinetics similar to those seen in C-type-inactivated Shaker channels. This paper confirms that prediction and demonstrates that activation and deactivation parameters for this mutant can be obtained from macroscopic ionic current measurements. We also show that the prolonged Na+ tail currents typical of C-type inactivated channels involve an equivalent prolongation of the return of gating charge, thus demonstrating that the kinetics of gating charge return in W434F channels can be markedly altered by changes in ionic conditions.  相似文献   

14.
C-type inactivation of Shaker potassium channels involves entry into a state (or states) in which the inactivated channels appear nonconducting in physiological solutions. However, when Shaker channels, from which fast N-type inactivation has been removed by NH2-terminal deletions, are expressed in Xenopus oocytes and evaluated in inside-out patches, complete removal of K+ ions from the internal solution exposes conduction of Na+ and Li+ in C-type inactivated conformational states. The present paper uses this observation to investigate the properties of ion conduction through C-type inactivated channel states, and demonstrates that both activation and deactivation can occur in C-type states, although with slower than normal kinetics. Channels in the C-type states appear “inactivated” (i.e., nonconducting) in physiological solutions due to the summation of two separate effects: first, internal K+ ions prevent Na+ ions from permeating through the channel; second, C-type inactivation greatly reduces the permeability of K+ relative to the permeability of Na+, thus altering the ion selectivity of the channel.  相似文献   

15.
Summary The fluorescent anionic dye, bisoxonol, and flow cytometry have been used to monitor changes in the membrane potential of rat thymocytes exposed to the B subunit of cholera toxin. The B subunit induced a rapid hyperpolarization, which was due to activation of a Ca2+-sensitive K+ channel. Reduction of extracellular Ca2+ to <1 m by the addition of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid immediately abolished the hyperpolarization caused by the B subunit. Cells treated with quinine and tetraethylammonium lost their ability to respond to the B subunit, whereas 4-aminopyridine did not have any effect. Thus, calcium-sensitive and not voltage-gated K+ channels appeared to be responsible for the hyperpolarization. The results of ion substitution experiments indicated that extracellular Na+ was not essential for changes in membrane potential. Further studies with ouabain, amiloride and furosemide demonstrated that electrogenic Na+/K+ ATPase, Na+/H+ antiporter and Na+/K+/Cl cotransporter, respectively, were not involved in the hyperpolarization process induced by the B subunit. Thus, crosslinking of several molecules of ganglioside GM1 on the cell surface of rat thymocytes by the pentavalent B subunit of cholera toxin modulated plasma membrane permeability to K+ by triggering the opening of Ca2+-sensitive K+ channels. A role for gangliosides in regulating ion permeability would have important implications for the function of gangliosides in various cellular phenomena.  相似文献   

16.
Extracellular acidification and reduction of extracellular K+ are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K+]o at pH 7.4, it is very sensitive to [K+]o at pH 6.4, and in the mutant, H463G, the removal of K+ o virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K+ o in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na+ permeation through inactivated channels. Although the H463G currents were abolished in zero [K+]o, robust Na+ tail currents through inactivated channels were observed. The appearnnce of H463G Na+ currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K+ was replaced by NMG+ and the inward Na+ current was recorded, addition of 1 mM K+ prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K+]o inhibit Kv1.5 channels through a common mechananism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).  相似文献   

17.
The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.  相似文献   

18.
Meech  Robert W. 《Hydrobiologia》2004,530(1-3):81-89
In the jellyfish Aglantha digitale two forms of swimming arise from two separate propagating axonal impulses: a fast, overshooting action potential that depends on TTX-resistant Na+ channels, and a low-amplitude spike that depends on T-type Ca2+ channels. While the Na+ action potential is propagated simply and without distortion, the shape of the Ca2+ spike depends on the past history of the axon; it is processed as well as propagated. Patch- and voltage-clamp experiments show how three classes of K+ channels contribute to this apparently unique system. A dual Na+/Ca2+ impulse mechanism may increase the bandwidth of an axonal line of communication but it also places restrictions on the form of the synaptic input needed for spike initiation.  相似文献   

19.
KcsA 通道对Na+、K+及Rb+离子选择性的统计热力学研究   总被引:2,自引:0,他引:2  
钾离子的通透率至少比钠离子的通透率大10000倍,这个问题至今没有很好地解决.为了在分子水平阐释钾离子通道的选择性机制,以KcsA钾通道X射线衍射结构为基础,采用密度泛函理论计算了不同离子在离子通道中的位能.计算结果表明,Rb+离子具有与K+离子相类似的位能曲线,但是其在通透过程遇到的位垒要比K+离子的位垒高,因而所对应的通透率也就小于钾离子的通透率,而钠离子的的通透率仅仅是钾离子通透率的0.0067%.文中所涉及的系统仅仅包含269个原子,而用分子动力学虽然也可以得到相近的结果,但是它的系统大小为41 000个原子.  相似文献   

20.
Spermidine and spermine, are endogenous polyamines (PAs) that regulate cell growth and modulate the activity of numerous ion channel proteins. In particular, intracellular PAs are potent blockers of many different cation channels and are responsible for strong suppression of outward K+ current, a phenomenon known as inward rectification characteristic of a major class of KIR K+ channels. We previously described block of heterologously expressed voltage-gated Na+ channels (NaV) of rat muscle by intracellular PAs and PAs have recently been found to modulate excitability of brain neocortical neurons by blocking neuronal NaV channels. In this study, we compared the sensitivity of four different cloned mammalian NaV isoforms to PAs to investigate whether PA block is a common feature of NaV channel pharmacology. We find that outward Na+ current of muscle (NaV1.4), heart (NaV1.5), and neuronal (NaV1.2, NaV1.7) NaV isoforms is blocked by PAs, suggesting that PA metabolism may be linked to modulation of action potential firing in numerous excitable tissues. Interestingly, the cardiac NaV1.5 channel is more sensitive to PA block than other isoforms. Our results also indicate that rapid binding of PAs to blocking sites in the NaV1.4 channel is restricted to access from the cytoplasmic side of the channel, but plasma membrane transport pathways for PA uptake may contribute to long-term NaV channel modulation. PAs may also play a role in drug interactions since spermine attenuates the use-dependent effect of the lidocaine, a typical local anesthetic and anti-arrhythmic drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号