首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
TL Joseph  DP Lane  CS Verma 《PloS one》2012,7(8):e43985
Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.  相似文献   

2.
Apolipoprotein mimetic peptides are short amphipathic peptides that efflux cholesterol from cells by the ABCA1 transporter and are being investigated as therapeutic agents for cardiovascular disease. We examined the role of helix stabilization of these peptides in cholesterol efflux. A 23-amino acid long peptide (Ac-VLEDSFKVSFLSALEEYTKKLNTQ-NH2) based on the last helix of apoA-I (A10) was synthesized, as well as two variants, S1A10 and S2A10, in which the third and fourth and third and fifth turn of each peptide, respectively, were covalently joined by hydrocarbon staples. By CD spectroscopy, the stapled variants at 24 °C were more helical in aqueous buffer than A10 (A10 17%, S1A10 62%, S2A10 97%). S1A10 and S2A10 unlike A10 were resistant to proteolysis by pepsin and chymotrypsin. S1A10 and S2A10 showed more than a 10-fold increase in cholesterol efflux by the ABCA1 transporter compared to A10. In summary, hydrocarbon stapling of amphipathic peptides increases their helicity, makes them resistant to proteolysis and enhances their ability to promote cholesterol efflux by the ABCA1 transporter, indicating that this peptide modification may be useful in the development of apolipoprotein mimetic peptides.  相似文献   

3.
We report the first synthesis of the C-terminally spermine-conjugated stapled peptide-based inhibitors of the p53-Mdm2 interaction. Subsequent biological, biophysical and cellular uptake assays with the spermine-conjugated stapled peptides revealed that spermine conjugation minimally affects biological activity while significantly increases peptide helicity and cellular uptake without apparent cytotoxicity.  相似文献   

4.
The impact of inserting hydrocarbon staples into short α-helical antimicrobial peptides lasioglossin III and melectin (antimicrobial peptides of wild bee venom) on their biological and biophysical properties has been examined. The stapling was achieved by ring-closing olefin metathesis, either between two S-2-(4′-pentenyl) alanine residues (S 5) incorporated at i and i + 4 positions or between R-2-(7′-octenyl) alanine (R 8) and S 5 incorporated at the i and i + 7 positions, respectively. We prepared several lasioglossin III and melectin analogs with a single staple inserted into different positions within the peptide chains as well as analogs with double staples. The stapled peptides exhibited a remarkable increase in hemolytic activity, while their antimicrobial activities decreased. Some single stapled peptides showed a higher resistance against proteolytic degradation than native ones, while the double stapled analogs were substantially more resistant. The CD spectra of the singly stapled peptides measured in water showed only a slightly better propensity to form α-helical structure when compared to native peptides, whereas the doubly stapled analogs exhibited dramatically enhanced α-helicity.  相似文献   

5.
The stereochemical effects of the hydrocarbon crosslink on the conformation and cellular uptake of i,i+4 stapled peptides were studied. Compared to its S,S-configurated counterpart, the crosslink bearing the R,R-configuration provided a significantly diminished helix stabilizing effect and conferred less efficient cellular uptake on the stapled peptides. These results suggest that the vesicular trafficking pathway employed by cells to take up stapled peptides is sensitive to the extent of helical character in the peptide, with greater helicity conferring increased cellular uptake.  相似文献   

6.
A small library of anticancer, cell-permeating, stapled peptides based on potent dual-specific antagonist of p53–MDM2/MDMX interactions, PMI-N8A, was synthesized, characterized and screened for anticancer activity against human colorectal cancer cell line, HCT-116. Employed synthetic modifications included: S-alkylation-based stapling, point mutations increasing hydrophobicity in key residues as well as improvement of cell-permeability by introduction of polycationic sequence(s) that were woven into the sequence of parental peptide. Selected analogue, ArB14Co, was also tested in vivo and exhibited potent anticancer bioactivity at the low dose (3.0 mg/kg). Collectively, our findings suggest that application of stapling in combination with rational design of polycationic short analogues may be a suitable approach in the development of physiologically active p53–MDM2/MDMX peptide inhibitors.  相似文献   

7.
Conantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-D-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties. To test the hypothesis that stapling can effectively replace γ-carboxyglutamic acid residues in stabilizing the helical conformation of conantokins, we designed, synthesized, and characterized several stapled analogs of conantokin G (conG), with varying connectivities in terms of staple length and location along the face of the α-helix. NMR studies confirmed that the ring-closing metathesis reaction yielded a single product with the Z configuration of the olefinic bond. Based on circular dichroism and molecular modeling, the stapled analogs exhibited significantly enhanced helicity compared with the native peptide in a metal-free environment. Stapling i,i+4 was benign with respect to effects on in vitro and in vivo pharmacological properties. One analog, namely conG[11-15,S(i,i+4)S(8)], blocked NR2B-containing NMDA receptors with IC(50) = 0.7 μm and provided significant protection in the 6-Hz psychomotor model of pharmacoresistant epilepsy in mice. Remarkably, unlike native conG, conG[11-15,S(i,i+4)S(8)] produced no behavioral motor toxicity. Our results extend the applications of peptide stapling to helical peptides with extracellular targets and provide a means for engineering conantokins with improved pharmacological properties.  相似文献   

8.
9.
Sam (Sterile alpha motif) domains represent small helical protein-protein interaction modules which play versatile functions in different cellular processes. The Sam domain from the EphA2 receptor binds the Sam domain of the lipid phosphatase Ship2 and this interaction modulates receptor endocytosis and degradation primarily generating pro-oncogenic effects in cell. To identify molecule antagonists of the EphA2-Sam/Ship2-Sam complex with anti-cancer activity, we focused on hydrocarbon helical stapled peptides. EphA2-Sam and one of its interactors (i.e., the first Sam domain of the adaptor protein Odin) were used as model systems for peptide design. Increase in helicity in the stapled peptides, with respect to the corresponding linear/native-like regions, was proved by structural studies conducted through CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance). Interestingly, interaction assays by means of NMR, SPR (Surface Plasmon Resonance) and MST (MicroScale Thermophoresis) techniques led to the discovery of a novel ligand of Ship2-Sam.  相似文献   

10.
Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3–BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the “stapling” with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49–68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300–600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3.  相似文献   

11.
p53 is a major tumor suppressor protein, that binds to, and is negatively regulated by MDM2. In tumors over expressing MDM2, p53 function can be rescued through the disruption of the MDM2-p53 interactions by small molecules and peptides. It is known that MDM2 also binds p73 but not p63, the two homologues of p53. We dissect the structural and energetic reasons underlying this discrimination and have identified a peptide that is intrinsically less helical than p53 and yet has a higher affinity for MDM2. The increased disorder has been introduced by localizing a cationic residue in between two anionic residues, imparting a degree of frustration to the system. In addition, the introduction of a bulkier hydrophobic group towards the centre of the peptide enables the peptide to adapt a bound conformation that on the one hand is most strained, and yet enables the peptide to straddle the largest surface of MDM2, amongst all the peptides. Computations also reveal that this peptide is a dual inhibitor, binding to MDMX. The computed affinity of the new peptide has been validated against MDM2 using fluorescence-based thermal shift assays.  相似文献   

12.
The oncoprotein MDM2 binds to tumor suppressor protein p53 and inhibits its anticancer activity, which leads to promotion of tumor cell growth and tumor survival. Abrogation of the p53:MDM2 interaction reportedly results in reactivation of the p53 pathway and inhibition of tumor cell proliferation. We recently performed rigorous selection of MDM2-binding peptides by means of mRNA display and identified an optimal 12-mer peptide (PRFWEYWLRLME), named MDM2 Inhibitory Peptide (MIP), which shows higher affinity for MDM2 (and also its homolog, MDMX) and higher tumor cell proliferation suppression activity than known peptides. Here we determined the NMR solution structure of a MIP-MDM2 fusion protein to elucidate the structural basis of the tight binding of MIP to MDM2. A region spanning from Phe3 to Met11 of MIP forms a single α-helix, which is longer than those of the other MDM2-binding peptides. MIP shares a conserved Phe3-Trp7-Leu10 triad, whose side chains are oriented towards and fit into the hydrophobic pockets of MDM2. Additionally, hydrophobic surface patches that surround the hydrophobic pockets of MDM2 are covered by solvent-exposed MIP residues, Trp4, Tyr6, and Met11. Their hydrophobic interactions extend the interface of the two molecules and contribute to the strong binding. The potential MDM2 inhibition activity observed for MIP turned out to originate from its enlarged binding interface. The structural information obtained in the present study provides a road map for the rational design of strong inhibitors of MDM2:p53 binding.  相似文献   

13.
Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.  相似文献   

14.
The ubiquitin-specific protease, USP7, has key roles in the p53 pathway whereby it stabilizes both p53 and MDM2. We show that the N-terminal domain of USP7 binds two closely spaced 4-residue sites in both p53 and MDM2, falling between p53 residues 359-367 and MDM2 residues 147-159. Cocrystal structures with USP7 were determined for both p53 peptides and for one MDM2 peptide. These peptides bind the same surface of USP7 as Epstein-Barr nuclear antigen-1, explaining the competitive nature of the interactions. The structures and mutagenesis data indicate a preference for a P/AXXS motif in peptides that bind USP7. Contacts made by serine are identical and crucial for all peptides, and Trp165 in the peptide-binding pocket of USP7 is also crucial. These results help to elucidate the mechanism of substrate recognition by USP7 and the regulation of the p53 pathway.  相似文献   

15.
Hu M  Gu L  Li M  Jeffrey PD  Gu W  Shi Y 《PLoS biology》2006,4(2):e27
Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53–MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor–receptor associated factor (TRAF)–like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP–MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-Å and 1.7-Å resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53–MDM2 pathway by HAUSP.  相似文献   

16.
Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53–MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor–receptor associated factor (TRAF)–like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP–MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-Å and 1.7-Å resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53–MDM2 pathway by HAUSP.  相似文献   

17.
p53 is a tumor suppressor protein that prevents tumorigenesis through cell cycle arrest or apoptosis of cells in response to cellular stress such as DNA damage. Because the oncoprotein MDM2 interacts with p53 and inhibits its activity, MDM2-p53 interaction has been a major target for the development of anticancer drugs. While previous studies have used phage display to identify peptides (such as DI) that inhibit the MDM2-p53 interaction, these peptides were not sufficiently optimized because the size of the phage-displayed random peptide libraries did not cover all of the possible sequences. In this study, we performed selection of MDM2-binding peptides from large random peptide libraries in two stages using mRNA display. We identified an optimal peptide named MIP that inhibited the MDM2-p53 and MDMX-p53 interactions 29- and 13-fold more effectively than DI, respectively. Expression of MIP fused to the thioredoxin scaffold protein in living cells by adenovirus caused stabilization of p53 through its interaction with MDM2, resulting in activation of the p53 pathway. Furthermore, expression of MIP also inhibited tumor cell proliferation in a p53-dependent manner more potently than DI. These results show that two-stage, mRNA-displayed peptide selection is useful for the rapid identification of potent peptides that target oncoproteins.  相似文献   

18.
Florescence anisotropy measurements using FAM-labelled p53 peptides showed that the binding of the peptides to MDM2 was dependant upon the phosphorylation of p53 at Thr18 and that this binding was modulated by the electrostatic properties of MDM2. In agreement with computational predictions, the binding to phosphorylated p53 peptide, in comparison to the unphosphorylated p53 peptide, was enhanced upon mutation of 3 key residues on the MDM2 surface.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号