首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes with altered DNA methylation can be used as biomarkers for cancer detection and assessment of prognosis. Here we analyzed the methylation status of a colorectal cancer biomarker panel (CNRIP1, FBN1, INA, MAL, SNCA, and SPG20) in 97 cancer cell lines, derived from 17 different cancer types. Interestingly, the genes were frequently methylated also in hematological cancer types and were therefore subjected to analyses in primary tumor samples from the major types of non-Hodgkin lymphomas (NHL) and in healthy controls. In total, the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 were methylated in 53%, 23%, 52%, 69%, 97%, and 92% of the tumor samples, respectively, and were unmethylated in all healthy controls. With the exception of a single tumor sample, a correct prediction of lymphoma or normal sample was made in a blinded analysis of the validation series using a combination of SNCA and SPG20. The combined ROC-curve analysis of these genes resulted in an area under the curve of 0.999 (P = 4.2 × 10−18), and a sensitivity and specificity of 98% and 100%, respectively, across the test and validation series. Interestingly, the promoter methylation of CNRIP1 was associated with decreased overall survival in diffuse large B-cell lymphoma (DLBCL) (P = 0.03).   In conclusion, our results demonstrate that SNCA and SPG20 methylation might be suitable for early detection and monitoring of NHL. Furthermore, CNRIP1 could potentially be used as a prognostic factor in DLBCL.  相似文献   

2.
3.
Several hereditary syndromes characterized by defective DNA repair are associated with high risk of non-Hodgkin lymphoma (NHL). To explore whether common polymorphisms in DNA repair genes affect risk of NHL in the general population, we evaluated the association between single nucleotide polymorphisms (SNPs) in DNA repair genes and risk of NHL in a population-based case–control study among women in Connecticut. A total of 518 NHL cases and 597 controls recruited into the study provided a biologic sample. Thirty-two SNPs in 18 genes involved in several DNA repair pathways were genotyped. Genotype data were analyzed by unconditional logistic regression adjusting for age and race. SNPs in four genes (ERCC5, ERCC2, WRN, and BRCA1) were associated with altered risk of NHL and diffuse large B-cell lymphoma (DLBCL), the major B cell subtype. In particular, ERCC5 Asp1104His was associated with increased risk of NHL overall (OR: 1.46; 95% CI: 1.13–1.88; P = 0.004), DLBCL (OR: 1.44; 95% CI: 0.99–2.09; P = 0.058), and also T cell lymphoma. WRN Cys1367Arg was associated with decreased risk of NHL overall (OR: 0.71; 95% CI: 0.56–0.91; P = 0.007) and DLBCL (OR: 0.66; 95% CI: 0.45–0.95; P = 0.024), as well as follicular and marginal zone lymphomas. Genetic polymorphisms in DNA repair genes, particularly ERCC5 and WRN, may play a role in the pathogenesis of NHL, especially for DLBCL. Further work is needed to extend these findings by carrying out extended haplotype analyses of these and related genes and to replicate the observations in other studies.  相似文献   

4.
Epigenetic modifications and DNA methylation in particular, have been recognized as important mechanisms to alter gene expression in malignant cells. Here, we identified candidate genes which were upregulated after an epigenetic treatment of B-cell lymphoma cell lines (Burkitt''s lymphoma, BL; Follicular lymphoma, FL; Diffuse large B-cell lymphoma, DLBCL activated B-cell like, ABC; and germinal center like, GCB) and simultaneously expressed at low levels in samples from lymphoma patients. Qualitative methylation analysis of 24 candidate genes in cell lines revealed five methylated genes (BMP7, BMPER, CDH1, DUSP4 and LRP12), which were further subjected to quantitative methylation analysis in clinical samples from 59 lymphoma patients (BL, FL, DLBCL ABC and GCB; and primary mediastinal B-cell lymphoma, PMBL). The genes LRP12 and CDH1 showed the highest methylation frequencies (94% and 92%, respectively). BMPER (58%), DUSP4 (32%) and BMP7 (22%), were also frequently methylated in patient samples. Importantly, all gene promoters were unmethylated in various control samples (CD19+ peripheral blood B cells, peripheral blood mononuclear cells and tonsils) as well as in follicular hyperplasia samples, underscoring a high specificity. The combination of LRP12 and CDH1 methylation could successfully discriminate between the vast majority of the lymphoma and control samples, emphasized by receiver operating characteristic analysis with a c-statistic of 0.999. These two genes represent promising epigenetic markers which may be suitable for monitoring of B-cell lymphoma.  相似文献   

5.

Background

Alpha-synuclein (SNCA) gene expression is an important factor in the pathogenesis of Parkinson''s disease (PD). Gene multiplication can cause inherited PD, and promoter polymorphisms that increase SNCA expression are associated with sporadic PD. CpG methylation in the promoter region may also influence SNCA expression.

Methodology/Principal Findings

By using cultured cells, we identified a region of the SNCA CpG island in which the methylation status altered along with increased SNCA expression. Postmortem brain analysis revealed regional non-specific methylation differences in this CpG region in the anterior cingulate and putamen among controls and PD; however, in the substantia nigra of PD, methylation was significantly decreased.

Conclusions/Significance

This CpG region may function as an intronic regulatory element for SNCA gene. Our findings suggest that a novel epigenetic regulatory mechanism controlling SNCA expression influences PD pathogenesis.  相似文献   

6.
《Autophagy》2013,9(1):144-154
SNCA/α-synuclein and its rare mutations are considered as the culprit proteins in Parkinson disease (PD). Wild-type (WT) SNCA has been shown to impair macroautophagy in mammalian cells and in transgenic mice. In this study, we monitored the dynamic changes in autophagy process and confirmed that overexpression of both WT and SNCAA53T inhibits autophagy in PC12 cells in a time-dependent manner. Furthermore, we showed that SNCA binds to both cytosolic and nuclear high mobility group box 1 (HMGB1), impairs the cytosolic translocation of HMGB1, blocks HMGB1-BECN1 binding, and strengthens BECN1-BCL2 binding. Deregulation of these molecular events by SNCA overexpression leads to autophagy inhibition. Overexpression of BECN1 restores autophagy and promotes the clearance of SNCA. siRNA knockdown of Hmgb1 inhibits basal autophagy and abolishes the inhibitory effect of SNCA on autophagy while overexpression of HMGB1 restores autophagy. Corynoxine B, a natural autophagy inducer, restores the deficient cytosolic translocation of HMGB1 and autophagy in cells overexpressing SNCA, which may be attributed to its ability to block SNCA-HMGB1 interaction. Based on these findings, we propose that SNCA-induced impairment of autophagy occurs, in part, through HMGB1, which may provide a potential therapeutic target for PD.  相似文献   

7.

Background

Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD.

Results

We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion.

Conclusion

We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression.  相似文献   

8.
Dysregulation of the one-carbon metabolic pathway, which controls nucleotide synthesis and DNA methylation, may promote lymphomagenesis. We evaluated the association between polymorphisms in one-carbon metabolism genes and risk of non-Hodgkin lymphoma (NHL) in a population-based case-control study in Australia. Cases (n = 561) and controls (n = 506) were genotyped for 14 selected single-nucleotide polymorphisms in 10 genes (CBS, FPGS, FTHFD, MTHFR, MTHFS, MTR, SHMT1, SLC19A1, TCN1, and TYMS). We also conducted a meta-analysis of all studies of Caucasian populations investigating the association between MTHFR Ex5+79C > T (a.k.a., 677C>T) and NHL risk. A global test of 13 genotypes was statistically significant for diffuse large B-cell lymphoma (DLBCL; P = 0.008), but not for follicular lymphoma (FL; P = 0.27) or all NHL (P = 0.17). The T allele at MTHFR Ex5+79 was marginally significantly associated with all NHL (OR = 1.25, 95% CI = 0.98–1.59) and DLBCL (1.36, 0.96–1.93). The T allele at TYMS Ex8+157 was associated with a reduced risk of FL (0.64, 0.46–0.91). An elevated risk of NHL was also observed among carriers of the G allele at FTHFD Ex21+31 (all NHL, 1.31, 1.02–1.69; DLBCL, 1.50, 1.05–2.14). A meta-analysis of 11 studies conducted in Caucasian populations of European origin (4,121 cases and 5,358 controls) supported an association between the MTHFR Ex5+79 T allele and increased NHL risk (additive model, P = 0.01). In conclusion, the results of this study suggest that genetic polymorphisms of one-carbon metabolism genes such as MTHFR and TYMS may influence susceptibility to NHL. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Parkinson’s disease (PD), one of the most common human neurodegenerative disorders, is characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. Our recent case-control association study of 268 SNPs in 121 candidate genes identified α-synuclein (SNCA) as a susceptibility gene for sporadic PD (P = 1.7 × 10−11). We also replicated the association of fibroblast growth factor 20 (FGF20) with PD (P = 0.0089). To find other susceptibility genes, we added 34 SNPs to the previous screen. Of 302 SNPs in a total 137 genes, but excluding SNCA, SNPs in NDUFV2, FGF2, CALB1 and B2M showed significant association (P < 0.01; 882 cases and 938 control subjects). We replicated the association analysis for these SNPs in a second independent sample set (521 cases and 1,003 control subjects). One SNP, rs1805874 in calbindin 1 (CALB1), showed significance in both analyses (P = 7.1 × 10−5; recessive model). When the analysis was stratified relative to the SNCA genotype, the odds ratio of CALB1 tended to increase according to the number of protective alleles in SNCA. In contrast, FGF20 was significant only in the subgroup of SNCA homozygote of risk allele. CALB1 is a calcium-binding protein that widely is expressed in neurons. A relative sparing of CALB1-positive dopaminergic neurons is observed in PD brains, compared with CALB1-negative neurons. Our genetic analysis suggests that CALB1 is associated with PD independently of SNCA, and that FGF20 is associated with PD synergistically with SNCA. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
《Epigenetics》2013,8(10):1248-1256
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG’s predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.  相似文献   

11.
《Autophagy》2013,9(12):1837-1838
Parkinson disease (PD) is the most common neurodegenerative movement disorder and is characterized pathologically by the formation of ubiquitin and SNCA/α-synuclein-containing inclusions (Lewy bodies), dystrophic midbrain dopaminergic (DAergic) terminals, and degeneration of midbrain DAergic neurons. The vast majority of PD occurs sporadically, while approximately 5% of all PD cases are inherited. Genetic mutations of a few genes have been identified as causes of familiar PD, i.e., mutations in SNCA, PARK2/parkin, UCHL1, PARK7/DJ1, PINK1 and LRRK2, leading to DAergic cell death, but variable pathological changes. The evidence supports the hypothesis that several pathogenic mechanisms are likely involved at initial stages of the disease, and eventually they merge to cause parkinsonism. The current challenge facing PD research is to unravel the components in these pathways that contribute to the pathogenesis of PD. Accumulating evidence has implicated dysfunctional autophagy, a regulated lysosomal pathway with a capacity for clearing protein aggregates and cellular organelles, as one of the pathogenic systems contributing to the development of idiopathic PD.  相似文献   

12.
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2′-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.  相似文献   

13.
Aberrant patterns in promoter methylation of tumor-suppressor genes and posttranslational modifications of histone proteins are considered as major features of malignancy. In this study, we aimed to investigate promoter methylation of three tumor-suppressor genes (BRCA-1, MGMT, and P16) and three histone marks (H3K9ac, H3K18ac, and H4K20me3) in patients with breast tumors. This case-control study included 27 patients with malignant breast tumors (MBT) and 31 patients with benign breast tumors (BBT). The methylation-specific PCR was used for determining promoter methylation of BRCA-1, MGMT, and P16 genes. Western blot analysis was performed to detect histone lysine acetylation (H3K9ac and H3K18ac) and lysine methylation (H4K20me3). BRCA-1 promoter methylation was detected in 44.4% of the MBT whereas this alteration was found in 9.7% of BBT (P = 0.005). The Kaplan-Meier analysis indicated that hypermethylation in BRCA-1 promoter was significantly associated with poor overall survival of patients with breast cancer (P = 0.039). MGMT promoter methylation was identified in 18.5% of MBT and 0.0% of the BBT (P = 0.01). The frequency of P16 promoter methylation was 25.8% in BBT and 11.1% in MBT (P = 0.12). As compared with BBT, MBT samples displayed the aberrant patterns of histones marks with hypomethylation of H4K20 and hypoacetylation of H3K18 (P = 0.03 and P = 0.04, respectively). There was a negative significant correlation between H3K9ac levels and tumor size in MBT group (r = −0.672; P = 0.008). The present findings suggest that promoter hypermethylation of MGMT and BRCA-1 genes along with alterations in H3K18ac and H4K20me3 levels may have prognostic values in patients with breast cancer. Moreover, the detection of these epigenetic modifications in breast tumors could be helpful in finding new methods for breast cancer therapy.  相似文献   

14.
《Epigenetics》2013,8(3):185-193
We used a chromosome 3 wide NotI microarray for identification of epigenetically inactivated genes in childhood acute lymphoblastic leukemia (ALL). Three novel genes demonstrated frequent methylation in childhood ALL. PPP2R3A (protein phosphatase 2, regulatory subunit B'', alpha) was frequently methylated in T (69%) and B (82%)-ALL. Whilst FBLN2 (fibulin 2) and THRB (thyroid hormone receptor, beta) showed frequent methylation in B-ALL (58%; 56% respectively), but were less frequently methylated in T-ALL (17% for both genes). Recently it was demonstrated that BNC1 (Basonuclin 1) and MXS1 (msh homeobox 1) were frequently methylated across common epithelial cancers. In our series of childhood ALL BNC1 was frequently methylated in both T (77%) and B-ALL (79%), whilst MSX1 showed T-ALL (25%) specific methylation. The methylation of the above 5 genes was cancer specific and expression of the genes could be restored in methylated leukemia cell lines treated with 5-aza-2’-deoxycytidine. This is the first report demonstrating frequent epigenetic inactivation of PPP2R3A, FBLN2, THRB, BNC1 and MSX1 in leukemia. The identification of frequently methylated genes showing cancer specific methylation will be useful in developing early cancer detection screens and for targeted epigenetic therapies.  相似文献   

15.
16.
17.
The review considers the epigenetic defects and their diagnostics in several hereditary disorders and tumors. Aberrant methylation of the promoter or regulatory region of a gene results in its functional inactivation, which is phenotypically similar to structural deletion. Screening tests were developed for Prader–Willi, Angelman, Wiedemann–Beckwith, and Martin–Bell syndromes and mental retardation FRAXE. The tests are based on allele methylation analysis by methylation-specific or methylation-sensitive PCR. Carcinogenesis-associated genes (RB1, CDKN2A, ARF14, HIC1, CDH1, etc.) are often methylated in tumors. Tumors differ in methylation frequencies, allowing differential diagnostics. Aberrant methylation of tumor suppressor genes occurs in early carcinogenesis, and its detection may be employed in presymptomatic diagnostics of tumors.  相似文献   

18.
Methylation of promoter CpG islands has been associated with gene silencing and demonstrated to lead to chromosomal instability. Therefore, some postulate that aberrantly methylated CpG regions may be important biomarkers indicative of cancer development. In this study we used the Illumina GoldenGate Methylation BeadArray Cancer Panel I for simultaneously profiling methylation of 1,505 CpG sites in order to identify methylation differences in 76 liver tissues ranging from normal to pre-neoplastic and neoplastic states. CpG sites for ESR1, GSTM2, and MME were significantly differentially methylated when comparing the pre-neoplastic tissues from patients with concomitant hepatocellular carcinoma (HCC) to the pre-neoplastic tissues from patients without HCC. When comparing paired HCC tissues to their corresponding pre-neoplastic non-tumorous tissues, eight CpG sites, including one CpG site that was hypermethylated (APC) and seven (NOTCH4, EMR3, HDAC9, DCL1, HLA-DOA, HLA-DPA1, and ERN1) that were hypomethylated in HCC, were identified. Our study demonstrates that high-throughput methylation technologies may be used to identify differentially methylated CpG sites that may prove to be important molecular events involved in carcinogenesis.  相似文献   

19.
Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.  相似文献   

20.
Shin CM  Kim N  Jung Y  Park JH  Kang GH  Park WY  Kim JS  Jung HC  Song IS 《Helicobacter》2011,16(3):179-188
Background and Aims: To determine genome‐wide DNA methylation profiles induced by Helicobacter pylori (H. pylori) infection and to identify methylation markers in H. pylori‐induced gastric carcinogenesis. Methods: Gastric mucosae obtained from controls (n = 20) and patients with gastric cancer (n = 28) were included. A wide panel of CpG sites in cancer‐related genes (1505 CpG sites in 807 genes) was analyzed using Illumina bead array technology. Validation of the results of Illumina bead array technique was performed using methylation‐specific PCR method for four genes (MOS, DCC, CRK, and PTPN6). Results: The Illumina bead array showed that a total of 359 CpG sites (269 genes) were identified as differentially methylated by H. pylori infection (p < .0001). The correlation between methylation‐specific PCR and bead array analysis was significant (p < .0001, Spearman coefficient = 0.5054). Methylation profiles in noncancerous gastric mucosae of the patients with gastric cancer showed quite distinct patterns according to the presence or absence of the current H. pylori infection; however, 10 CpG sites were identified to be hypermethylated and three hypomethylated in association with the presence of gastric cancer regardless of H. pylori infection (p < .01). Conclusions: Genome‐wide methylation profiles showed a number of genes differentially methylated by H. pylori infection. Methylation profiles in noncancerous gastric mucosae from the patients with gastric cancer can be affected by H. pylori‐induced gastritis. Differentially methylated CpG sites in this study needs to be validated in a larger population using quantitative methylation‐specific PCR method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号