首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.  相似文献   

2.
Conway ME  Coles SJ  Islam MM  Hutson SM 《Biochemistry》2008,47(19):5465-5479
Redox regulation of proteins through oxidation and S-thiolation are important regulatory processes, acting in both a protective and adaptive role in the cell. In the current study, we investigated the sensitivity of the neuronal human cytosolic branched-chain aminotransferase (hBCATc) protein to oxidation and S-thiolation, with particular attention focused on functionality and modulation of its CXXC motif. Thiol specific reagents showed significant redox cycling between the reactive thiols and the TNB anion, and using NEM, four of the six reactive thiols are critical to the functionality of hBCATc. Site-directed mutagenesis studies supported these findings where a reduced kcat (ranging from 50-70% of hBCATc) for C335S, C338S, C335/8S, and C221S, respectively, followed by a modest effect on C242S was observed. However, only the thiols of the CXXC motif (C335 and C338) were directly involved in the reversible redox regulation of hBCATc through oxidation (with a loss of 40-45% BCAT activity on air oxidation alone). Concurrent with these findings, under air oxidation, the X-ray crystallography structure of hBCATc showed a disulphide bond between C335 and C338. Further oxidation of the other four thiols was not evident until levels of hydrogen peroxide were elevated. S-thiolation experiments of hBCATc exposed to GSH provided evidence for significant recycling between GSH and the thiols of hBCATc, which implied that under reducing conditions GSH was operating as a thiol donor with minimal S-glutathionylation. Western blot analysis of WT hBCATc and mutant proteins showed that as the ratio of GSH:GSSG decreased significant S-glutathionylation occurred (with a further loss of 20% BCAT activity), preferentially at the thiols of the CXXC motif, suggesting a shift in function toward a more protective role for GSH. Furthermore, the extent of S-glutathionylation increased in response to oxidative stress induced by hydrogen peroxide potentially through a C335 sulfenic acid intermediate. Deglutathionylation of hBCATc-SSG using the GSH/glutaredoxin system provides evidence that this protein may play an important role in cellular redox regulation. Moreover, redox associations between hBCATc and several neuronal proteins were identified using targeted proteomics. Thus, our data provides strong evidence that the reactive thiol groups, in particular the thiols of the CXXC motif, play an integral role in redox regulation and that hBCATc has redox mediated associations with several neuronal proteins involved in G-protein cell signaling, indicating a novel role for hBCATc in cellular redox control.  相似文献   

3.
Autophagy is a major catabolic pathway by which eukaryotic cells degrade and recycle macromolecules and organelles. This pathway is activated under environmental stress conditions, during development and in various pathological situations. In this study, we describe the role of reactive oxygen species (ROS) as signaling molecules in starvation-induced autophagy. We show that starvation stimulates formation of ROS, specifically H(2)O(2). These oxidative conditions are essential for autophagy, as treatment with antioxidative agents abolished the formation of autophagosomes and the consequent degradation of proteins. Furthermore, we identify the cysteine protease HsAtg4 as a direct target for oxidation by H(2)O(2), and specify a cysteine residue located near the HsAtg4 catalytic site as a critical for this regulation. Expression of this regulatory mutant prevented the formation of autophagosomes in cells, thus providing a molecular mechanism for redox regulation of the autophagic process.  相似文献   

4.
Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum–mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol−disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.  相似文献   

5.
《Autophagy》2013,9(12):1769-1781
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, GSH) is the most abundant low molecular weight, thiol-containing compound within the cells and has a primary role in the antioxidant defense and intracellular signaling. Here we demonstrated that nutrient deprivation led to a significant decrease of intracellular GSH levels in three different carcinoma cell lines. This phenomenon was dependent on ABCC1-mediated GSH extrusion, along with GCL inhibition and, to a minor extent, the formation of GSH-protein mixed disulfides that synergistically contributed to the modulation of autophagy by shifting the intracellular redox state toward more oxidizing conditions. Modulation of intracellular GSH by inhibiting its de novo synthesis through incubation with buthionine sulfoximine, or by maintaining its levels through GSH ethyl ester, affected the oxidation of protein thiols, such as PRDXs and consequently the kinetics of autophagy activation. We also demonstrated that thiol-oxidizing or -alkylating agents, such as diamide and diethyl maleate activated autophagy, corroborating the evidence that changes in thiol redox state contributed to the occurrence of autophagy.  相似文献   

6.
7.
8.
Protein thiol oxidation subserves important biological functions and constitutes a sequel of reactive oxygen species toxicity. We developed two distinct thiol-labeling approaches to identify oxidized cytoplasmic protein thiols in Saccharomyces cerevisiae. Inone approach, we used N-(6-(biotinamido)hexyl)-3'-(2'-pyridyldithio)-propionamide to purify oxidized protein thiols, and in the other, we used N-[(14)C]ethylmaleimide to quantify this oxidation. Both approaches showed a large number of the same proteins with oxidized thiols ( approximately 200), 64 of which were identified by mass spectrometry. We show that, irrespective of its mechanism, protein thiol oxidation is dependent upon molecular O(2). We also show that H(2)O(2) does not cause de novo protein thiol oxidation, but rather increases the oxidation state of a select group of proteins. Furthermore, our study reveals contrasted differences in the oxidized proteome of cells upon inactivation of the thioredoxin or GSH pathway suggestive of very distinct thiol redox control functions, assigning an exclusive role for thioredoxin in H(2)O(2) metabolism and the presumed thiol redox buffer function for GSH. Taken together, these results suggest the high selectivity of cytoplasmic protein thiol oxidation.  相似文献   

9.
Cancer cells are characterized by higher levels of intracellular reactive oxygen species (ROS) due to metabolic aberrations. ROS are widely accepted as second messengers triggering pivotal signaling pathways involved in the process of cell metabolism, cell cycle, apoptosis, and autophagy. However, the underlying cellular mechanisms remain largely unknown. Recently, accumulating evidence has demonstrated that ROS initiate redox signaling through direct oxidative modification of the cysteines of key redox-sensitive proteins (termed redox sensors). Uncovering the functional changes underlying redox regulation of redox sensors is urgently required, and the role of different redox sensors in distinct disease states still remains to be identified. To assist this, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for cancer treatment. Highlighted here are recent advances in redox proteomics approaches and their applications in identifying redox sensors involved in tumor development.  相似文献   

10.
Cellular redox signalling is mediated by the post-translational modification of proteins in signal-transduction pathways by ROS/RNS (reactive oxygen species/reactive nitrogen species) or the products derived from their reactions. NO is perhaps the best understood in this regard with two important modifications of proteins known to induce conformational changes leading to modulation of function. The first is the addition of NO to haem groups as shown for soluble guanylate cyclase and the newly discovered NO/cytochrome c oxidase signalling pathway in mitochondria. The second mechanism is through the modification of thiols by NO to form an S-nitrosated species. Other ROS/RNS can also modify signalling proteins although the mechanisms are not as clearly defined. For example, electrophilic lipids, formed as the reaction products of oxidation reactions, orchestrate adaptive responses in the vasculature by reacting with nucleophilic cysteine residues. In modifying signalling proteins ROS/RNS appear to change the overall activity of signalling pathways in a process that we have termed 'redox tone'. In this review, we discuss these different mechanisms of redox cell signalling, and give specific examples of ROS/RNS participation in signal transduction.  相似文献   

11.
12.
To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for “signaling” and “damaging” ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress.  相似文献   

13.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

14.
Glutathione homeostasis and redox-regulation by sulfhydryl groups   总被引:1,自引:0,他引:1  
  相似文献   

15.
Signal transduction by reactive oxygen species (ROS; "redox signaling") has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.  相似文献   

16.
Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it is not known whether protein redox states are affected under these conditions. The purpose of the present study was to determine whether culture conditions affect the redox state of thioredoxin-1 (Trx1), the protein responsible for reducing most oxidized proteins in the cytoplasm and nucleus. The results showed that Trx1 was more oxidized in sparse HeLa cell cultures than in confluent cells. The glutathione pool was also more oxidized, demonstrating that both of the major cellular redox regulating systems were affected by culture density. In addition, the total amount of Trx1 protein was lower and the subcellular distribution of Trx1 was different in sparse cells. Trx1 in sparse cultures was predominantly nuclear whereas it was predominantly cytoplasmic in confluent cultures. This localization pattern was not unique to HeLa cells as it was also observed in A549, Cos-1 and HEK293 cells. These findings demonstrate that Trx1 is subject to changes in expression, redox state and subcellular localization with changing culture density, indicating that the redox environments of the cytoplasm and the nucleus are distinct and have different requirements under different culture conditions.  相似文献   

17.
Oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTP), which leads to their reversible inactivation, has emerged as an important regulatory mechanism linking cellular tyrosine phosphorylation and signalling by reactive-oxygen or -nitrogen species (ROS, RNS). This review focuses on recent findings about the involved pathways, enzymes and biochemical mechanisms. Both the general cellular redox state and extracellular ligand-stimulated ROS production can cause PTP oxidation. Members of the PTP family differ in their intrinsic susceptibility to oxidation, and different types of oxidative modification of the PTP catalytic cysteine can occur. The role of PTP oxidation for physiological signalling processes as well as in different pathologies is described on the basis of well-investigated examples. Criteria to establish the causal involvement of PTP oxidation in a given process are proposed. A better understanding of mechanisms leading to selective PTP oxidation in a cellular context, and finding ways to pharmacologically modulate these pathways are important topics for future research.  相似文献   

18.
The sensitive oxidations of sulfur containing amino acids (i.e., cysteines and methionines) commonly control protein function, and act as important signaling mechanisms to modify metabolic responses to environmental stressors. Mechanisms associated with cysteine oxidation to form sulfenic acid and disulfides (i.e., cystine and glutathione adducts), and their reversibility through thioredoxin-dependent mechanisms, are broadly appreciated as important regulatory mechanisms that control the function of a range of different proteins. Less commonly understood are the cellular consequences of methionine oxidation to form methionine sulfoxide, as the structural requirements for their thioredoxin-dependent reduction by methionine sulfoxide reductases limit the reversibility of methionine oxidation to sequences within surface exposed and conformationally disordered regions of proteins. Surface exposed methionines are commonly involved in molecular recognition between transient protein signaling complexes, where their oxidation disrupts productive protein-protein interactions linked to a range of cellular responses. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress responses in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the physical basis for differences in the sensitivity of individual methionines within plant and animal calmodulin to reactive oxygen species (ROS), the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes. It is suggested that, in combination with high-throughput proteomic methods and current generation informatics tools, these mechanistic insights permit useful predictions of oxidatively sensitive signaling proteins that act as redox and stress sensors in response to methionine oxidation.  相似文献   

19.
TF (tissue factor) is a transmembrane cofactor that initiates blood coagulation in mammals by binding Factor VIIa to activate Factors X and IX. The cofactor can reside in a cryptic configuration on primary cells and de-encryption may involve a redox change in the C-terminal domain Cys(186)-Cys(209) disulfide bond. The redox potential of the bond, the spacing of the reduced cysteine thiols and their oxidation by TF activators was investigated to test the involvement of the dithiol/disulfide in TF activation. A standard redox potential of -278 mV was determined for the Cys(186)-Cys(209) disulfide of recombinant soluble TF. Notably, ablating the N-terminal domain Cys(49)-Cys(57) disulfide markedly increased the redox potential of the Cys(186)-Cys(209) bond, suggesting that the N-terminal bond may be involved in the regulation of redox activity at the C-terminal bond. Using As(III) and dibromobimane as molecular rulers for closely spaced sulfur atoms, the reduced Cys(186) and Cys(209) sulfurs were found to be within 3-6 ? (1 ?=0.1 nm) of each other, which is close enough to reform the disulfide bond. HgCl2 is a very efficient activator of cellular TF and activating concentrations of HgCl2-mediated oxidation of the reduced Cys(186) and Cys(209) thiols of soluble TF. Moreover, PAO (phenylarsonous acid), which cross-links two cysteine thiols that are in close proximity, and MMTS (methyl methanethiolsulfonate), at concentrations where it oxidizes closely spaced cysteine residues to a cystine residue, were efficient activators of cellular TF. These findings further support a role for Cys(186) and Cys(209) in TF activation.  相似文献   

20.
Reactive oxygen species (ROS) are generally small, short-lived and highly reactive molecules, initially thought to be a pathological role in the cell. A growing amount of evidence in recent years argues for ROS functioning as a signaling intermediate to facilitate cellular adaptation in response to pathophysiological stress through the regulation of autophagy. Autophagy is an essential cellular process that plays a crucial role in recycling cellular components and damaged organelles to eliminate sources of ROS in response to various stress conditions. A large number of studies have shown that DNA damage response (DDR) transducer ataxia-telangiectasia mutated (ATM) protein can also be activated by ROS, and its downstream signaling pathway is involved in autophagy regulation. This review aims at providing novel insight into the regulatory mechanism of ATM activated by ROS and its molecular basis for inducing autophagy, and revealing a new function that ATM can not only maintain genome homeostasis in the nucleus, but also as a ROS sensor trigger autophagy to maintain cellular homeostasis in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号