首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular senescence, which is known to halt proliferation of aged and stressed cells, plays a key role against cancer development and is also closely associated with organismal aging. While increased insulin‐like growth factor (IGF) signaling induces cell proliferation, survival and cancer progression, disrupted IGF signaling is known to enhance longevity concomitantly with delay in aging processes. The molecular mechanisms involved in the regulation of aging by IGF signaling and whether IGF regulates cellular senescence are still poorly understood. In this study, we demonstrate that IGF‐1 exerts a dual function in promoting cell proliferation as well as cellular senescence. While acute IGF‐1 exposure promotes cell proliferation and is opposed by p53, prolonged IGF‐1 treatment induces premature cellular senescence in a p53‐dependent manner. We show that prolonged IGF‐1 treatment inhibits SIRT1 deacetylase activity, resulting in increased p53 acetylation as well as p53 stabilization and activation, thus leading to premature cellular senescence. In addition, either expression of SIRT1 or inhibition of p53 prevented IGF‐1‐induced premature cellular senescence. Together, these findings suggest that p53 acts as a molecular switch in monitoring IGF‐1‐induced proliferation and premature senescence, and suggest a possible molecular connection involving IGF‐1‐SIRT1‐p53 signaling in cellular senescence and aging.  相似文献   

2.
Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age‐related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF‐1, SIRT1, and ING‐1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype.  相似文献   

3.
An approach to investigate the role of cellular senescence in organismal aging has been to abrogate signaling pathways known to induce cellular senescence and to assess the effects in mouse models of premature aging. Recently, we reported the effect of loss of function of p21, a gene implicated in p53-induced cellular senescence, in the background of the Ku80-/- premature aging mouse (Zhao et al., EMBO reports, 2009). Here, we provide an overview of the effects of p21 deletion in different models of premature aging.  相似文献   

4.
Two faces of p53: aging and tumor suppression   总被引:7,自引:1,他引:6  
The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity.  相似文献   

5.
The stress-activated signaling pathways, p53 and NF-κB, have a major role in the regulation of cellular senescence and organismal aging. These ancient signaling networks display functional antagonism via negative autoregulatory circuits. WIP1 (wildtype p53-induced phosphatase 1) and MIF (macrophage migration inhibitory factor) are signaling molecules which link together the p53 and NF-κB pathways via positive and negative feedback loops. It seems that the efficiency of the p53 signaling pathway declines during aging whereas that of NF-κB is clearly enhanced. Moreover, p53 is an important trigger of cellular senescence while NF-κB signaling seems to be involved in the induction of the senescence-associated secretory phenotype (SASP). MIF is a pro-inflammatory cytokine which inhibits the function of p53 signaling whereas it is linked to NF-κB signaling via a positive feedback loop. MIF knockout mice are healthier and live longer than their wild-type counterparts. An increased level of MIF can support inflammatory responses via enhancing NF-κB signaling and repressing the function of p53. p53 is an inducer of the expression of WIP1 which can subsequently inhibit NF-κB signaling. Several observations indicate that the activity of WIP1 decreases during the aging process, this being probably attributable to the decline in p53 function. Decreased WIP1 activity potentiates the activity of p38MAPK and NF-κB signaling leading to premature cellular senescence as well as low-level chronic inflammation. We will review the findings linking WIP1 and MIF to specific signaling responses of p53 and NF-κB and discuss their role in the regulation of cellular senescence and organismal aging.  相似文献   

6.
Cellular aging and senescence   总被引:7,自引:0,他引:7  
Differentiated eukaryotic cells have only a finite capacity for cell division. This limitation is thought to be a cellular manifestation of organismal aging, and a restraint to tumor progression. The molecular basis for cellular senescence is not known, but a molecular framework for understanding this phenomenon has recently been established.  相似文献   

7.
Altered cell division is associated with overproliferation and tumorigenesis, however, mitotic aberrations can also trigger antiproliferative responses leading to postmitotic cell cycle exit. Here, we focus on the role of the centrosome and in particular of centrosomal TACC (transforming acidic coiled coil) proteins in tumorigenesis and cellular senescence. We have compiled recent evidence that inhibition or depletion of various mitotic proteins which take over key roles in centrosome and kinetochore integrity and mitotic checkpoint function is sufficient to activate a p53-p21WAF driven premature senescence phenotype. These findings have direct implications for proliferative tissue homeostasis as well as for cellular and organismal aging.  相似文献   

8.
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.  相似文献   

9.
Han YH  Kim HS  Kim JM  Kim SK  Yu DY  Moon EY 《FEBS letters》2005,579(21):4897-4902
Reactive oxygen species (ROS) were generated in all oxygen-utilizing organisms. Peroxiredoxin II (Prx II) as one of antioxidant enzymes may play a protective role against the oxidative damage caused by ROS. In order to define the role of Prx II in organismal aging, we evaluated cellular senescence in Prx II(-/-) mouse embryonic fibroblast (MEF). As compared to wild type MEF, cellular senescence was accelerated in Prx II(-/-) MEF. Senescence-associated (SA)-beta-galactosidase (Gal)-positive cell formation was about 30% higher in Prx II(-/-) MEF. N-Acetyl-l-cysteine (NAC) treatment attenuated SA-beta-Gal-positive cell formation. Prx II(-/-) MEF exhibited the higher G2/M (41%) and lower S (1.6%) phase cells as compared to 24% and 7.3% [corrected] in wild type MEF, respectively. A high increase in the p16 and a slight increase in the p21 and p53 levels were detected in PrxII(-/-) MEF cells. The cellular senescence of Prx II(-/-) MEF was correlated with the organismal aging of Prx II(-/-) mouse skin. While extracellular signal-regulated kinase (ERK) and p38 activation was detected in Prx II(-/-) MEF, ERK and c-Jun N-terminal kinase (JNK) activation was detected in Prx II(-/-) skin. These results suggest that Prx II may function as an enzymatic antioxidant to prevent cellular senescence and skin aging.  相似文献   

10.
《Epigenetics》2013,8(7):680-688
The aging field is replete with theories. Over the past years, many distinct, yet overlapping mechanisms have been proposed to explain organismal aging. These include free radicals, loss of heterochromatin, genetically programmed senescence, telomere shortening, genomic instability, nutritional intake and growth signaling, to name a few. The objective of this Point-of-View is to highlight recent progress on the “loss of heterochromatin” model of aging and to propose that epigenetic changes contributing to global heterochromatin loss may underlie the various cellular processes associated with aging.  相似文献   

11.
Longevity, stress response, and cancer in aging telomerase-deficient mice   总被引:57,自引:0,他引:57  
Telomere maintenance is thought to play a role in signaling cellular senescence; however, a link with organismal aging processes has not been established. The telomerase null mouse provides an opportunity to understand the effects associated with critical telomere shortening at the organismal level. We studied a variety of physiological processes in an aging cohort of mTR-/- mice. Loss of telomere function did not elicit a full spectrum of classical pathophysiological symptoms of aging. However, age-dependent telomere shortening and accompanying genetic instability were associated with shortened life span as well as a reduced capacity to respond to stresses such as wound healing and hematopoietic ablation. In addition, we found an increased incidence of spontaneous malignancies. These findings demonstrate a critical role for telomere length in the overall fitness, reserve, and well being of the aging organism.  相似文献   

12.
mTORC1 and p53     
A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1). The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53 DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.  相似文献   

13.
Does p53 affect organismal aging?   总被引:8,自引:0,他引:8  
The p53 protein plays a critical role in the prevention of cancer. It responds to a variety of cellular stresses to induce either apoptosis, a transient cell cycle arrest, or a terminal cell cycle arrest called senescence. Senescence in cultured cells is associated with augmented p53 activity and abrogation of p53 activity may delay in vitro senescence. Increasing evidence suggests that p53 may also influence aspects of organismal aging. Several mutant mouse models that display alterations in longevity and aging-related phenotypes have defects in genes that alter p53 signaling. Recently, my laboratory has developed and characterized a p53 mutant mouse line that appears to have an enhanced p53 response. These p53 mutants exhibit increased cancer resistance, yet have a shortened longevity and display a number of early aging-associated phenotypes, suggesting a role for p53 in the aging process. The nature of the aging phenotypes observed in this p53 mutant line is consistent with a model in which aging is driven in part by a gradual depletion of stem cell functional capacity.  相似文献   

14.
p57(Kip2) and p21(Cip1/Waf1) are members of cyclin-dependent kinase (Cdk) inhibitors which play critical roles in the terminal differentiation of skeletal muscle and lung. We investigated mRNA levels of p57(Kip2) and p21(Cip1/Waf1) in skeletal muscle and lung of mice during maturation and aging using Northern hybridization. The mRNA levels of p57(Kip2) and p21(Cip1/Waf1) decreased in skeletal muscle and lung of mice during maturation and aging except that the level of p21(Cip1/Waf1) mRNA in skeletal muscle of mice showed an increase only during maturation. The decrease of the p57(Kip2) mRNA level involved neither a change of DNA methylation at the promoter region nor an alteration of the imprinting status in aged mice. The decreases of p57(Kip2) and p21(Cip1/Waf1) mRNA levels during aging suggest that the process of tissue-specific terminal differentiation may be gradually downregulated with senescence in tissues where p57(Kip2) and p21(Cip1/Waf1) play key roles in differentiation. The downregulation of p57(Kip2) and p21(Cip1/Waf1) during aging is contrary to the upregulation of Cdk inhibitors during cellular replicative senescence, indicating that aging in an organismal level is mediated by mechanisms different from replicative senescence of cultured cells.  相似文献   

15.
The aging field is replete with theories. Over the past years, many distinct, yet overlapping mechanisms have been proposed to explain organismal aging. These include free radicals, loss of heterochromatin, genetically programmed senescence, telomere shortening, genomic instability, nutritional intake and growth signaling, to name a few. The objective of this Point-of-View is to highlight recent progress on the “loss of heterochromatin” model of aging and to propose that epigenetic changes contributing to global heterochromatin loss may underlie the various cellular processes associated with aging.  相似文献   

16.

Background

Secretory Apolipoprotein J/Clusterin (sCLU) is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs) remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence.

Methodology/Principal Findings

By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking), in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation.

Conclusions/Significance

We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.  相似文献   

17.
Cellular senescence is an anti-cancer mechanism and may contribute to organismal aging. A change in paradigm has been proposed that cellular senescence may reduce cancer mortality rather than promote it late in life, and thus positively contributes to longevity in organisms with renewable tissues as a common mechanism across the species.  相似文献   

18.
Here I overview the accompanying three reports on suppression of cellular senescence with inhibitors of mTOR, PI-3K and MEK. How can growth inhibitors suppress senescence? May these aging-suppressants decelerate organismal aging? To answer these questions, we need to reconsider the meaning of aging.  相似文献   

19.
Phospholipase D in cellular senescence.   总被引:6,自引:0,他引:6  
Cellular senescence appears to be an important part of organismal aging. Cellular senescence is characterized by flattened enlarged morphology, inhibition of DNA replication in response to growth factors, inability to phosphorylate the pRb tumor suppressor protein, inability to produce c-fos or AP-1 and overexpression of a variety of genes, notably p21 (CIP-1/WAF-1) and p16(INK). It is now clear that certain early mitotic signals become defective with the onset of senescence. Among these is the PLD/PKC pathway. Evidence suggests that activation of PLD and PKC is critical for mitogenesis. Recent data suggest that the defect in PLD/PKC in cellular senescence is a result of elevated cellular ceramide levels which inhibit PLD activation. It appears that the elevated ceramide is a result of neutral sphingomyelinase activation. Ceramide acts to inhibit the activation of PLD by possibly three mechanisms, inhibiting activation by Rho, translocation to the membrane and gene expression. Addition of ceramide to young cells not only inhibits PLD but also recapitulates all the standard measures of cellular senescence as described above.  相似文献   

20.
Cellular senescence appears to be an important part of organismal aging. Cellular senescence is characterized by flattened enlarged morphology, inhibition of DNA replication in response to growth factors, inability to phosphorylate the pRb tumor suppressor protein, inability to produce c-fos or AP-1 and overexpression of a variety of genes, notably p21 (CIP-1/WAF-1) and p16INK. It is now clear that certain early mitotic signals become defective with the onset of senescence. Among these is the PLD/PKC pathway. Evidence suggests that activation of PLD and PKC is critical for mitogenesis. Recent data suggest that the defect in PLD/PKC in cellular senescence is a result of elevated cellular ceramide levels which inhibit PLD activation. It appears that the elevated ceramide is a result of neutral sphingomyelinase activation. Ceramide acts to inhibit the activation of PLD by possibly three mechanisms, inhibiting activation by Rho, translocation to the membrane and gene expression. Addition of ceramide to young cells not only inhibits PLD but also recapitulates all the standard measures of cellular senescence as described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号