首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanism underlying channel opening in response to agonist binding remains a challenging issue in neuroscience. In this regard, many efforts have been recently undertaken in ATP-gated P2X receptors. Among those efforts, we have provided evidence in the P2X2 receptor that tightening of ATP sites upon agonist binding induces opening of the ion channel. Here we extend our analysis to show that the sulfhydryl-reactive ATP analog 8-thiocyano-ATP (NCS-ATP), a potent P2X2 agonist, when covalently labeled in the ATP-binding site at position Leu186 likely favors the tightening mechanism, but not the channel opening mechanism. Our data predict the existence of intermediate or preactivation state(s) trapped by NCS-ATP, in which tightening of the binding site is favored while the channel is still closed. We propose that this (these) intermediate ATP-bound state(s) prime(s) channel gating in the P2X2 receptor.  相似文献   

2.
The opening of ligand-gated ion channels in response to agonist binding is a fundamental process in biology. In ATP-gated P2X receptors, little is known about the molecular events that couple ATP binding to channel opening. In this paper, we identify structural changes of the ATP site accompanying the P2X2 receptor activation by engineering extracellular zinc bridges at putative mobile regions as revealed by normal mode analysis. We provide evidence that tightening of the ATP sites shaped like open 'jaws' induces opening of the P2X ion channel. We show that ATP binding favours jaw tightening, whereas binding of a competitive antagonist prevents gating induced by this movement. Our data reveal the inherent dynamic of the binding jaw, and provide new structural insights into the mechanism of P2X receptor activation.  相似文献   

3.
P2X receptors play an important role in communication between cells in the nervous system. Therefore, understanding the mechanisms of inhibition of these receptors is important for the development of new tools for drug discovery. Our objective has been to determine the pharmacological activity of the antagonist suramin, the most important antagonist of purinergic receptor function, as well as to demonstrate its noncompetitive inhibition and confirm a competitive mechanism between ATP and TNP-ATP in 1321N1 glial cells stably transfected with the recombinant rat P2X(2) receptor. A radioligand binding assay was employed to determine whether suramin, TNP-ATP, and ATP compete for the same binding site on the receptor. TNP-ATP displaced [alpha-32P]ATP, whereas suramin did not interfere with [alpha-32P]ATP-receptor binding. To determine the inhibition mechanism relevant for channel opening, currents obtained in fast kinetic whole-cell recording experiments, following stimulation of cells by ATP in the presence of suramin, were compared to those obtained by ATP in the presence of TNP-ATP. Supported by a mathematical model for receptor kinetics [Breitinger, H. G., Geetha, N., and Hess, G. P. (2001) Biochemistry 40, 8419-8429], the inhibition factors were plotted as functions of inhibitor or agonist concentrations. Analysis of the data indicated a competitive inhibition mechanism for TNP-ATP and a noncompetitive inhibition for suramin. Taken together, both data support a noncompetitive inhibition mechanism of the rat recombinant P2X(2) receptor by suramin, confirm the competitive inhibition by TNP-ATP, and allow the prediction of a model for P2X(2) receptor inhibition.  相似文献   

4.
The localization of ATP binding site(s) at P2X receptors and the molecular rearrangements associated with opening and closing of channels are still not well understood. At P2X(4) receptor, substitution of the K67, F185, K190, F230, R278, D280, R295, and K313 ectodomain residues with alanine generated low or non-responsive mutants, whereas the F294A mutant was functional. The loss of receptor function was also observed in K67R, R295K, and K313R mutants, but not in F185W, K190R, F230W, R278K, and D280E mutants. To examine whether the loss of function reflects decreased sensitivity of mutants for ATP, we treated cells with ivermectin, an antiparasitic agent that enhances responsiveness of P2X(4)R. In the presence of ivermectin, all low or non-responsive mutants responded to ATP in a dose-dependent manner, with the EC(50) values for ATP of about 1, 2, 4, 20, 60, 125, 270, 420, 1000 and 2300 micromol/L at D280A, R278A, F185A, K190A, R295K, K313R, R295A, K313A, K67A and K67R mutants, respectively. These results indicate that lysines 67 and 313 and arginine 295 play a critical role in forming the proper three-dimensional structure of P2X(4)R for agonist binding and/or channel gating.  相似文献   

5.
Human P2X7 receptors (hP2X7Rs) belong to the P2X family, which opens an intrinsic cation channel when challenged by extracellular ATP. hP2X7Rs are expressed in cells of the inflammatory and immune system. During inflammation, ATP and protons are secreted into the interstitial fluid. Therefore, we investigated the effect of protons on the activation of hP2X7Rs. hP2X7Rs were expressed in Xenopus laevis oocytes and activated by the agonists ATP or benzoyl-benzoyl-ATP (BzATP) at different pH values. The protons reduced the hP2X7R-dependent cation current amplitude and slowed the current deactivation depending on the type and concentration of the agonist used. These effects can be explained by (i) the protonation of ATP, which reduces the effective concentration of the agonist ATP4− at the high- and low-affinity ATP activation site of the hP2XR, and (ii) direct allosteric inhibition of the hP2X7R channel opening that follows ATP4− binding to the low-affinity activation site. Due to the hampered activation via the low-affinity activation site, a low pH (as observed in inflamed tissues) leads to a relative increase in the contribution of the high-affinity activation site for hP2X7R channel opening.  相似文献   

6.
Purinergic P2X receptors represent a novel structural type of ligand-gated ion channels activated by extracellular ATP. So far, seven P2X receptor subunits have been found in excitable as well as non-excitable tissues. Little is known about their structure, mechanism of channel opening, localization, and role in the central nervous system. The aim of this work is to summarize recent investigations and describe our contribution to elucidating the structure of the ATP binding site and transmembrane domains of the P2X receptor, we also discuss the expression and physiological roles played by the ATP and P2X receptors in the anterior pituitary and hypothalamus.  相似文献   

7.
P2X7 receptors (P2X7Rs) are nonselective cation channels that are opened by the binding of extracellular ATP and are involved in the modulation of epithelial secretion, inflammation and nociception. Here, we investigated the effect of extracellular anions on channel gating and permeation of human P2X7Rs (hP2X7Rs) expressed in Xenopus laevis oocytes. Two-microelectrode voltage-clamp recordings showed that ATP-induced hP2X7R-mediated currents increased when extracellular chloride was substituted by the organic anions glutamate or aspartate and decreased when chloride was replaced by the inorganic anions nitrate, sulfate or iodide. ATP concentration-response comparisons revealed that substitution of chloride by glutamate decreased agonist efficacy, while substitution by iodide increased agonist efficacy at high ATP concentrations. Meanwhile, the ATP potency remained unchanged. Activation of the hP2X7R at low ATP concentrations via the high-affinity ATP effector site was not affected by the replacement of chloride by glutamate or iodide. To analyze the anion effect on the hP2X7R at the single-molecule level, we performed single-channel current measurements using the patch-clamp technique in the outside-out configuration. Chloride substitution did not affect the single-channel conductance, but the probability that the P2X7R channel was open increased when chloride was replaced by glutamate and decreased when chloride was replaced by iodide. This effect was due to an influence of the anions on the mean closed times of the hP2X7R channel. We conclude that hP2X7R channels are not anion-permeable in physiological Na+-based media and that external anions allosterically affect ion channel opening in the fully ATP4-liganded P2X7R through an extracellular anion binding site.  相似文献   

8.
The family of ATP-gated P2X receptor channels have a conserved protein kinase C site in the N-terminal intracellular domain. This site was disrupted in human P2X(1) receptors by the mutation T18A. T18A mutants were expressed at normal levels in Xenopus oocytes; however, the peak current amplitude was reduced by >99% and showed approximately 10 fold faster desensitisation in response to ATP than wild type (WT) receptors showed. P2X receptor subunits form functional trimeric channels. Co-expression of T18A and WT receptors (90:10 ratio) produced heteromeric T18A/WT channels with the rapid T18A time-course and an approximately 90-fold increase in peak current amplitude compared to T18A. Similarly, T18A dominated the desensitisation phenotype of heteromeric channels composed of T18A and slowly desensitising K68A mutants. These results suggest that phosphorylation of P2X(1) receptors has a dramatic effect on the time-course of the response and may provide a mechanism for regulating channel function.  相似文献   

9.
P2X receptors are ATP-gated cation channels. The x-ray structure of a P2X4 receptor provided a major advance in understanding the molecular basis of receptor properties. However, how agonists are coordinated, the extent of the binding site, and the contribution of the vestibules in the extracellular domain to ionic permeation have not been addressed. We have used cysteine-scanning mutagenesis to determine the contribution of residues Glu(52)-Gly(96) to human P2X1 receptor properties. ATP potency was reduced for the mutants K68C, K70C, and F92C. The efficacy of the partial agonist BzATP was also reduced for several mutants forming the back of the proposed agonist binding site. Molecular docking in silico of both ATP and BzATP provided models of the agonist binding site consistent with these data. Individual cysteine mutants had no effect or slightly increased antagonism by suramin or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate. Mutants at the entrance to and lining the upper vestibule were unaffected by cysteine-reactive methanethiosulfonate (MTS) reagents, suggesting that it does not contribute to ionic permeation. Mutants that were sensitive to modification by MTS reagents were predominantly found either around the proposed ATP binding pocket or on the strands connecting the binding pocket to the transmembrane region and lining the central vestibule. In particular, ATP sensitivity and currents were increased by a positively charged MTS reagent at the G60C mutant at the interface between the central and extracellular vestibule. This suggests that dilation of the base of the central vestibule contributes to gating of the receptor.  相似文献   

10.
P2X receptors are ligand-gated cation channels that transition from closed to open states upon binding ATP. The crystal structure of the closed zebrafish P2X4.1 receptor directly reveals that the ion-conducting pathway is formed by three transmembrane domain 2 (TM2) α-helices, each being provided by the three subunits of the trimer. However, the transitions in TM2 that accompany channel opening are incompletely understood and remain unresolved. In this study, we quantified gated access to Cd2+ at substituted cysteines in TM2 of P2X2 receptors in the open and closed states. Our data for the closed state are consistent with the zebrafish P2X4.1 structure, with isoleucines and threonines (Ile-332 and Thr-336) positioned one helical turn apart lining the channel wall on approach to the gate. Our data for the open state reveal gated access to deeper parts of the pore (Thr-339, Val-343, Asp-349, and Leu-353), suggesting the closed channel gate is between Thr-336 and Thr-339. We also found unexpected interactions between native Cys-348 and D349C that result in tight Cd2+ binding deep within the intracellular vestibule in the open state. Interpreted with a P2X2 receptor structural model of the closed state, our data suggest that the channel gate opens near Thr-336/Thr-339 and is accompanied by movement of the pore-lining regions, which narrow toward the cytosolic end of TM2 in the open state. Such transitions would relieve the barrier to ion flow and render the intracellular vestibule less splayed during channel opening in the presence of ATP.  相似文献   

11.
ATP is an important extracellular signaling molecule and can activate both ionotropic (P2X) and metabotropic purinergic (P2Y) receptors to influence cellular function in many aspects. Gap junction is an intercellular channel and plays a critical role in hearing. Here, we report that stimulation of ATP reduced gap junctional coupling between cochlear supporting cells. This uncoupling effect could be evoked by nanomolar physiological levels of ATP. A P2X receptor agonist benzoylbenzoyl-ATP (BzATP) but not a P2Y receptor agonist UTP stimulated this uncoupling effect. Application of P2X receptor antagonists pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS, 50 μM) or oxidized ATP (oATP, 0.1 mM) eliminated this uncoupling effect. We further found that ATP activated P2X receptors in the cochlear supporting cells allowing Ca2+ influxing, thereby increasing intracellular Ca2+ concentration to mediate gap junctions. These data suggest that ATP can mediate cochlear gap junctions at the physiological level by the activation of P2X receptors rather than P2Y receptors. This P2X receptor-mediated purinergic control on the cochlear gap junctions may play an important role in the regulation of K+-recycling for ionic homeostasis in the cochlea and the reduction of hearing sensitivity under noise stress for protection.  相似文献   

12.
Orthosteric and allosteric binding sites of P2X receptors   总被引:1,自引:0,他引:1  
P2X receptors for ATP comprise a distinct family of ligand gated ion channels with a range of properties. They have been shown to be involved in a variety of physiological processes including blood clotting, sensory perception, pain sensation, bone formation as well as inflammation and may provide a number of novel drug targets. In addition to the orthosteric site for ATP binding it has been suggested that there may be additional allosteric sites that regulate agonist action at the receptor. There is currently no crystal structure available for P2X receptors and the lack of sequence similarity to other ATP binding proteins has meant that a mutagenesis-based approach has been used primarily to investigate receptor structure-function. This review aims to provide an overview of recent work that gives an insight into residues involved in ATP action and allosteric regulation.  相似文献   

13.
Ion channel opening and desensitization is a fundamental process in neurotransmission. The ATP-gated P2X1 receptor (P2X1R) shows rapid and long-lasting desensitization upon agonist binding. This makes the electrophysiological investigation of its desensitization process, agonist unbinding, and recovery from desensitization a challenging task. Here, we show that the fluorescent agonist Alexa-647-ATP is a potent agonist at the P2X1R and a versatile tool to directly visualize agonist binding and unbinding. We demonstrate that the long-lasting desensitization of the P2X1R is due to both slow unbinding of agonist from the desensitized receptor and agonist mediated receptor internalization. Furthermore, the unbinding of the agonist Alexa-647-ATP from the desensitized receptor is accelerated in the continuous presence of competitive ligand. Modeling of our data indicates that three agonist molecules are required to drive the receptor into desensitization. Direct visualization of ligand unbinding from the desensitized receptor demonstrates the cooperativity of this process.  相似文献   

14.
Protection of the heart from ischemia-reperfusion injury can be achieved by ischemic preconditioning and ischemic postconditioning. Previous studies revealed that a complex of pannexin-1 with the P2X(7) receptor forms a channel during ischemic preconditioning and ischemic postconditioning that results in the release of endogenous cardioprotectants. ATP binds to P2X(7) receptors, inducing the formation of a channel in association with pannexin-1. We hypothesized that this channel would provide a pathway for the release of these same cardioprotectants. Preconditioning-isolated perfused rat hearts with 0.4 μM ATP preceding 40 min of ischemia minimized infarct size upon subsequent reperfusion (5% of risk area) and resulted in >80% recovery of left ventricular developed pressure. Postconditioning with ATP after ischemia during reperfusion was also protective (6% infarct and 72% recovery of left ventricular developed pressure). Antagonists of both pannexin-1 (carbenoxolone and mefloquine) and P2X(7) receptors (brilliant blue G and A438079) blocked ATP pre- and postconditioning, indicating that ATP protection was elicited via the opening of a pannexin-1/P2X(7) channel. An antagonist of binding of the endogenous cardioprotectant sphingosine 1-phosphate to its G protein-coupled receptor diminished protection by ATP, which is also consistent with an ATP-dependent release of cardioprotectants. Suramin, an antagonist of binding of ATP (and ADP) to P2Y receptors, was without effect on ATP protection. Benzoyl benzoyl-ATP, a more specific P2X(7) agonist, was also a potent pre- and postconditioning agent and sensitive to blockade by pannexin-1/P2X(7) channel antagonists. The data point out for the first time the potential of P2X(7) agonists as cardioprotectants.  相似文献   

15.
Activation and desensitization kinetics of the rat P2X1 receptor at nanomolar ATP concentrations were studied in Xenopus oocytes using two-electrode voltage-clamp recording. The solution exchange system used allowed complete and reproducible solution exchange in <0.5 s. Sustained exposure to 1-100 nM ATP led to a profound desensitization of P2X1 receptors. At steady-state, desensitization could be described by the Hill equation with a K1/2 value of 3.2 +/- 0.1 nM. Also, the ATP dependence of peak currents could be described by a Hill equation with an EC50 value of 0.7 microM. Accordingly, ATP dose-effect relationships of activation and desensitization practically do not overlap. Recovery from desensitization could be described by a monoexponential function with the time-constant tau = 11.6 +/-1.0 min. Current transients at 10-100 nM ATP, which elicited 0.1-8.5% of the maximum response, were compatible with a linear three-state model, C-O-D (closed-open-desensitized), with an ATP concentration-dependent activation rate and an ATP concentration-independent (constant) desensitization rate. In the range of 18-300 nM ATP, the total areas under the elicited current transients were equal, suggesting that P2X1 receptor desensitization occurs exclusively via the open conformation. Hence, our results are compatible with a model, according to which P2X1 receptor activation and desensitization follow the same reaction pathway, i.e., without significant C to D transition. We assume that the K1/2 of 3.2 nM for receptor desensitization reflects the nanomolar ATP affinity of the receptor found by others in agonist binding experiments. The high EC50 value of 0.7 microM for receptor activation is a consequence of fast desensitization combined with nonsteady-state conditions during recording of peak currents, which are the basis of the dose-response curve. Our results imply that nanomolar extracellular ATP concentrations can obscure P2X1 receptor responses by driving a significant fraction of the receptor pool into a long-lasting refractory closed state.  相似文献   

16.
Using the patch-clamp method, we studied the influence of external alkali and organic monovalent cations on the single-channel properties of the adenosine triphosphate (ATP)-activated recombinant human P2X(7) receptor. The slope conductance of the hP2X(7) channel decreased and the reversal potential was shifted to more negative values as the ionic diameter of the organic test cations increased. From the relationship between single-channel conductance and the dimensions of the inward current carrier, the narrowest portion of the pore was estimated to have a mean diameter of approximately 8.5 A. Single-channel kinetics and permeation properties remained unchanged during receptor activation by up to 1 mM ATP(4-) for >1 min, arguing against a molecular correlate of pore dilation at the single P2X(7) channel level. Substitution of extracellular Na(+) by any other alkali or organic cation drastically increased the open probability of the channels by prolonging the mean open time. This effect seems to be mediated allosterically through an extracellular voltage-dependent Na(+) binding site with a K(d) of approximately 5 mM Na(+) at a membrane potential of -120 mV. The modulation of the ATP-induced hP2X(7) receptor gating by extracellular Na(+) could be well described by altering the rate constant from the open to the neighboring closed state in a C-C-C-O kinetic receptor model. We suggest that P2X(7) receptor-induced depolarization and associated K(+)-efflux may reduce Na(+) occupancy of the regulatory Na(+) binding site and thus increase the efficacy of ATP(4-) in a feed-forward manner in P2X(7) receptor-expressing cells.  相似文献   

17.
Statins have both cholesterol lowering and anti-inflammatory activities, whether mechanisms underlying their activities are independent remains unclear. The ATP-gated P2X(4) receptor is a pro-inflammatory mediator. Here, we investigate the action of fluvastatin and other cholesterol depleting agents on native and recombinant human P2X(4) receptor. Fluvastatin and mβCD suppressed P2X(4)-dependent calcium influx in THP-1 monocytes, without affecting P2Y receptor responses. mβCD or filipin III suppressed the current density of recombinant human P2X(4) receptors. Human P2X(2) was insensitive to cholesterol depletion. Cholesterol depletion had no effect on intrinsic P2X(4) receptor properties as judged by ATP concentration-response relationship, receptor rundown or current decay during agonist occupancy. These data suggest fluvastatin suppresses P2X(4) activity in monocytes through cholesterol depletion and not by modulating intrinsic channel properties.  相似文献   

18.
AimsRecently, we demonstrated that cultured mouse astrocytes exhibited basal channel opening of P2X7 receptor (P2X7R) in the absence of any exogenous ligand, but the regulatory mechanism involved was not elucidated. Since our preliminary experiments suggested possible involvement of peroxisome proliferator-activated receptor (PPAR) γ in the regulation, we examined whether PPARγ regulated P2X7R basal channel opening in mouse astrocytes.Main methodsP2X7R channel opening was assessed as to the uptake of a marker dye, YO-PRO-1® (YP), in the presence or absence of agonists and antagonists for PPARγ under a fluorescence microscope. Expression of PPARγ was evaluated by Western blotting and immunocytochemistry.Key findingsNSAIDs such as flufenamic acid (FFA) and indomethacin, which are a cyclooxygenase inhibitor and a PPARγ agonist, showed enhancing and inhibiting effects on YP uptake at low and high concentrations, respectively, and the enhanced uptake was abolished by periodate-oxidized ATP (oxATP), a selective P2X7R antagonist. The PPARγ agonists 15-deoxy-Δ12,14-prostaglandin J2 and ciglitazone decreased the basal and FFA-enhanced YP uptake, while the antagonist GW9662 increased YP uptake, this effect being blocked by the agonists and also by oxATP. PPARγ was distributed in the nucleus and cytosolic/membrane fraction of cultured mouse astrocytes.SignificanceThese findings indicate that basal channel opening of P2X7R in mouse astrocytes is at least in part regulated by PPARγ.  相似文献   

19.
P2X receptor subtypes can be distinguished by their sensitivity to ATP analogues and selective antagonists. We have used chimeras between human P2X1 and P2X2 receptors to address the contribution of the extracellular ligand binding loop, transmembrane segments (TM1 and TM2), and intracellular amino and carboxyl termini to the action of partial agonists (higher potency and efficacy of BzATP and Ap5A at P2X1 receptors) and antagonists. Sensitivity to the antagonists NF449, suramin, and PPADS was conferred by the nature of the extracellular loop (e.g. nanomolar for NF449 at P2X1 and P2X2-1EXT and micromolar at P2X2 and P2X1-2EXT). In contrast, the effectiveness of partial agonists was similar to P2X1 levels for both of the loop transfers, suggesting that interactions with the rest of the receptor played an important role. Swapping TM2 had reciprocal effects on partial agonist efficacy. However, TM1 swaps increased partial agonist efficacy at both chimeras, and this was similar for swaps of both TM1 and 2. Changing the amino terminus had no effect on agonist potency but increased partial agonist efficacy at P2X2-1N and decreased it at P2X1-2N chimeras, demonstrating that potency and efficacy can be independently regulated. Chimeras and point mutations also identified residues in the carboxyl terminus that regulated recovery from channel desensitization. These results show that interactions among the intracellular, transmembrane, and extracellular portions of the receptor regulate channel properties and suggest that transitions to channel opening, the behavior of the open channel, and recovery from the desensitized state can be controlled independently.  相似文献   

20.
P2X(4) receptors are involved in mechanotransduction processes, but it is unknown whether or not P2X(4) receptors form mechanosensitive ion channels. This study questioned, whether laminar shear stress (LSS) can modulate P2X(4) receptor activity. Mouse P2X(4) receptor was cloned and heterologously expressed in Xenopus laevis oocytes. In two-electrode-voltage-clamp experiments the application of ATP (100μM) produced a transient inward current that was decreased by about 50% upon a second ATP application, corresponding to the desensitization behavior of P2X(4) receptors. In P2X(4) expressing oocytes LSS (shear forces of ~5.1dynes/cm(2)) did not produce any effect. However, LSS modulated the response of P2X(4) to ATP. With LSS (~5.1dynes/cm(2)) the desensitization of the current due to the second ATP application was diminished. Ivermectin (IVM), a compound which stabilizes the open state of P2X(4) receptors, mimicked the effect of LSS (~5.1dynes/cm(2)), since there was no additional effect of LSS after pre-incubation with IVM detected. This indicates that LSS like IVM stabilizes the open state of the receptor, although the particular mechanism remains unknown. These data demonstrate that LSS modulates the activity of P2X(4) receptors by eliminating the desensitization of the receptors in response to ATP probably by stabilizing the open state of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号