首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cullin-based E3 ubiquitin ligases play important roles in the regulation of diverse developmental processes and environmental responses in eukaryotic organisms. Recently, it was shown in Schizosaccharomyces pombe, Caenorhabditis elegans, and mammals that Cullin3 (CUL3) directly associates with RBX1 and BTB domain proteins in vivo to form a new family of E3 ligases, with the BTB protein subunit functioning in substrate recognition. Here, we demonstrate that Arabidopsis thaliana has two redundant CUL3 (AtCUL3) genes that are essential for embryo development. Besides supporting anticipated specific AtCUL3 interactions with the RING protein AtRBX1 and representative Arabidopsis proteins containing a BTB domain in vitro, we show that AtCUL3 cofractionates and specifically associates with AtRBX1 and a representative BTB protein in vivo. Similar to the AtCUL1 subunit of the SKP1-CUL1-F-box protein-type E3 ligases, the AtCUL3 subunit of the BTB-containing E3 ligase complexes is subjected to modification and possible regulation by the ubiquitin-like protein Related to Ubiquitin in vivo. Together with the presence of large numbers of BTB proteins with diverse structural features and expression patterns, our data suggest that Arabidopsis has conserved AtCUL3-RBX1-BTB protein E3 ubiquitin ligases to target diverse protein substrates for degradation by the ubiquitin/proteasome pathway.  相似文献   

3.
The cullin-containing ubiquitin-protein isopeptide ligases (E3s) play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recognition and the catalysis of ubiquitination are carried out by distinct polypeptides. In a search for proteins involved in regulation of cullin-containing E3 ubiquitin ligases we immunopurified CUL4B-containing complex from HeLa cells and identified TIP120A as an associated protein by mass spectrometry. Immunoprecipitation of cullins revealed that all cullins tested specifically interacted with TIP120A. Reciprocal immunoaffinity purification of TIP120A confirmed the stable interaction of TIP120A with cullin family proteins. TIP120A formed a complex with CUL1 and Rbx1, but interfered with the binding of Skp1 and F-box proteins to CUL1. TIP120A greatly reduced the ubiquitination of phosphorylated IkappaBalpha by SCF(beta-TrCP) ubiquitin ligase. These results suggest that TIP120A functions as a negative regulator of SCF E3 ubiquitin ligases and may modulate other cullin ligases in a similar fashion.  相似文献   

4.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.  相似文献   

5.
Controlled protein ubiquitination through E3 ubiquitin ligases and degradation via 26S proteasome machinery is required for orderly progression through cell cycle, chromatin remodeling, DNA repair, and development. Each cullin-dependent ubiquitin ligase (E3) complex can recruit various substrates for their degradation. Cullin 4A (CUL4A) and Cullin 4B (CUL4B) are members of cullin family proteins that mediate ubiquitin dependent proteolysis. Though, these two cul4 genes are functionally redundant, Cullin 4B is not a substitute for all the Cullin 4A functions. Published report has shown that CUL4A interacts with p53 and induces its decay. Although, CUL4A has been known to control several cellular processes, little is known about CUL4B functions. Therefore, in this study, we analyzed the role of CUL4B on p53 polyubiquitination. Our stable cell line and transient transfection studies show that CUL4B indeed interacts with p53 and induces its polyubiquitination. Importantly, both CUL4A and CUL4B overexpressing cells show almost equal levels of p53 polyubiquitination. Moreover, we observed an increased level of polyubiquitination on p53 in CUL4B overexpressing stable cell line upon treatment with siRNA specific for CUL4A indicating that CUL4B plays a vital role in p53 stability. In addition, we have observed the differential expression of CUL4B in various eukaryotic cell lines and mouse tissues suggesting the important role of CUL4B in various tissues. Together, these observations establish an important negative regulatory role of CUL4B on p53 stability.  相似文献   

6.
Cullin proteins, which belong to multigenic families in all eukaryotes, associate with other proteins to form ubiquitin protein ligases (E3s) that target substrates for proteolysis by the 26S proteasome. Here, we present the molecular and genetic characterization of a plant Cullin3. In contrast to fungi and animals, the genome of the model plant Arabidopsis thaliana contains two related CUL3 genes, called CUL3A and CUL3B. We found that CUL3A is ubiquitously expressed in plants and is able to interact with the ring-finger protein RBX1. A genomic search revealed the existence of at least 76 BTB-domain proteins in Arabidopsis belonging to 11 major families. Yeast two-hybrid experiments indicate that representative members of certain families are able to physically interact with both CUL3A and CUL3B, suggesting that Arabidopsis CUL3 forms E3 protein complexes with certain BTB domain proteins. In order to determine the function of CUL3A, we used a reverse genetic approach. The cul3a null mutant flowers slightly later than the control plants. Furthermore, this mutant exhibits a reduced sensitivity of the inhibition of hypocotyl growth in far-red light and miss-expresses COP1. The viability of the mutant plants suggests functional redundancy between the two CUL3 genes in Arabidopsis.  相似文献   

7.
8.
Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together.  相似文献   

9.
Target recognition by the ubiquitin system is mediated by E3 ubiquitin ligases. Nedd4 family members are E3 ligases comprised of a C2 domain, 2–4 WW domains that bind PY motifs (L/PPxY) and a ubiquitin ligase HECT domain. The nine Nedd4 family proteins in mammals include two close relatives: Nedd4 (Nedd4‐1) and Nedd4L (Nedd4‐2), but their global substrate recognition or differences in substrate specificity are unknown. We performed in vitro ubiquitylation and binding assays of human Nedd4‐1 and Nedd4‐2, and rat‐Nedd4‐1, using protein microarrays spotted with ~8200 human proteins. Top hits (substrates) for the ubiquitylation and binding assays mostly contain PY motifs. Although several substrates were recognized by both Nedd4‐1 and Nedd4‐2, others were specific to only one, with several Tyr kinases preferred by Nedd4‐1 and some ion channels by Nedd4‐2; this was subsequently validated in vivo. Accordingly, Nedd4‐1 knockdown or knockout in cells led to sustained signalling via some of its substrate Tyr kinases (e.g. FGFR), suggesting Nedd4‐1 suppresses their signalling. These results demonstrate the feasibility of identifying substrates and deciphering substrate specificity of mammalian E3 ligases.  相似文献   

10.
Cullin proteins assemble a large number of RING E3 ubiquitin ligases and regulate various physiological processes. Covalent modification of cullins by the ubiquitin-like protein NEDD8 activates cullin ligases through an as yet undefined mechanism. We show here that p120(CAND1) selectively binds to unneddylated CUL1 and is dissociated by CUL1 neddylation. CAND1 formed a ternary complex with CUL1 and ROC1. CAND1 dissociated SKP1 from CUL1 and inhibited SCF ligase activity in vitro. Suppression of CAND1 in vivo increased the level of the CUL1-SKP1 complex. We suggest that by restricting SKP1-CUL1 interaction, CAND1 regulated the assembly of productive SCF ubiquitin ligases, allowing a common CUL1-ROC core to be utilized by a large number of SKP1-F box-substrate subcomplexes.  相似文献   

11.
12.
Cullin-containing E3 ubiquitin ligases in plant development   总被引:8,自引:0,他引:8  
In eukaryotes, the ubiquitin-proteasome system participates in the control of signal transduction events by selectively eliminating regulatory proteins. E3 ubiquitin ligases specifically bind degradation substrates and mediate their poly-ubiquitylation, a prerequisite for their degradation by the 26S proteasome. On the basis of the analysis of the Arabidopsis genome sequence, it is predicted that there are more than 1000 E3 ubiquitin ligases in plants. Several types of E3 ubiquitin ligases have already been characterized in eukaryotes. Recently, some of these E3 enzymes have been implicated in specific plant signaling pathways.  相似文献   

13.
Selective modification of proteins by ubiquitination is directed by diverse families of ubiquitin-protein ligases (or E3s). A large collection of E3s use Cullins (CULs) as scaffolds to form multisubunit E3 complexes in which the CUL binds a target recognition subcomplex and the RBX1 docking protein, which delivers the activated ubiquitin moiety. Arabidopsis and rice contain a large collection of CUL isoforms, indicating that multiple CUL-based E3s exist in plants. Here we show that Arabidopsis CUL3a and CUL3b associate with RBX1 and members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form BTB E3s. Eighty genes encoding BTB domain-containing proteins were identified in the Arabidopsis genome, indicating that a diverse array of BTB E3s is possible. In addition to the BTB domain, the encoded proteins also contain various other interaction motifs that likely serve as target recognition elements. DNA microarray analyses show that BTB genes are expressed widely in the plant and that tissue-specific and isoform-specific patterns exist. Arabidopsis defective in both CUL3a and CUL3b are embryo-lethal, indicating that BTB E3s are essential for plant development.  相似文献   

14.
p97 is an ATP-dependent chaperone that plays an important role in endoplasmic reticulum-associated degradation but whose connections to turnover of soluble proteins remain sparse. Binding of p97 to substrates is mediated by cofactors that contain ubiquitin-binding domains. We employed "network proteomics" to show that p97 assembles with all of the 13 mammalian UBX-domain proteins. The UBX proteins that bind ubiquitin conjugates also interact with dozens of E3 ubiquitin ligases, only one of which had been previously linked to p97. In particular, UBXD7 links p97 to the ubiquitin ligase CUL2/VHL and its substrate hypoxia-inducible factor 1alpha (HIF1alpha). Depletion of p97 leads to accumulation of endogenous HIF1alpha and increased expression of a HIF1alpha target gene. The large number of ubiquitin ligases found associated with UBX proteins suggests that p97 plays a far broader role than previously anticipated in the global regulation of protein turnover.  相似文献   

15.
The ubiquitin-proteosome system (UPS) is a non-lysosomal proteolysis system involved in the degradation of irrelevant/misfolded intracellular proteins. The protein substrates of this system are tagged by ubiquitin in sequential reactions that target them for proteasome-dependent destruction. In the developing central nervous system, ubiquitin-mediated proteolysis has recently emerged as an important player in the regulation of neural progenitor proliferation, cell specification, neuronal differentiation, maturation, and migration. E3 ubiquitin ligases are crucial components in the UPS because they provide the specificity that determines which substrates are targeted for ubiquitin-dependent proteolysis. In this review, we discuss the molecular mechanisms of the UPS, focusing primarily on the roles of E3 ligases and their substrates in sequential steps of neurogenesis.  相似文献   

16.
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis anddegradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainlycontrolled by the ubiquitineproteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26Sproteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsiblefor the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such ascancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promotingrole of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimategoal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.  相似文献   

17.
18.
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.  相似文献   

19.
Ubiquitin E3 ligases are a diverse family of protein complexes that mediate the ubiquitination and subsequent proteolytic turnover of proteins in a highly specific manner. Among the several classes of ubiquitin E3 ligases, the Skp1-Cullin-F-box (SCF) class is generally comprised of three 'core' subunits: Skp1 and Cullin, plus at least one F-box protein (FBP) subunit that imparts specificity for the ubiquitination of selected target proteins. Recent genetic and biochemical evidence in Arabidopsis thaliana suggests that post-translational turnover of proteins mediated by SCF complexes is important for the regulation of diverse developmental and environmental response pathways. In this report, we extend upon a previous annotation of the Arabidopsis Skp1-like (ASK) and FBP gene families to include the Cullin family of proteins. Analysis of the protein interaction profiles involving the products of all three gene families suggests a functional distinction between ASK proteins in that selected members of the protein family interact generally while others interact more specifically with members of the F-box protein family. Analysis of the interaction of Cullins with FBPs indicates that CUL1 and CUL2, but not CUL3A, persist as components of selected SCF complexes, suggesting some degree of functional specialization for these proteins. Yeast two-hybrid analyses also revealed binary protein interactions between selected members of the FBP family in Arabidopsis. These and related results are discussed in terms of their implications for subunit composition, stoichiometry and functional diversity of SCF complexes in Arabidopsis.  相似文献   

20.
In plants, the small protein related to ubiquitin (RUB) modifies cullin (CUL) proteins in ubiquitin E3 ligases to allow for efficient transfer of ubiquitin to substrate proteins for degradation by the 26S proteasome. At the molecular level, the conjugation of RUB to individual CUL proteins is transient in nature, which aids in the stability of the cullins and adaptor proteins. Many changes in cellular processes occur within the plant upon exposure to light, including well-documented changes in the stability of individual proteins. However, overall activity of E3 ligases between dark- and light-grown seedlings has not been assessed in plants. In order to understand more about the activity of the protein degradation pathway, overall levels of RUB-modified CULs were measured in Arabidopsis thaliana seedlings growing in different light conditions. We found that light influenced the global levels of RUBylation on CULs, but not uniformly. Blue light had little effect on both Cul1 and Cul3 RUBylation levels. However, red light directed the increase in Cul3 RUBylation levels, but not Cul1. This red-light regulation of Cul3 was at least partially dependent on the activation of the phytochrome B signaling pathway. The results indicate that the RUBylation levels on individual CULs change in response to different light conditions, which enable plants to fine-tune their growth and development to the various light environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号