首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Since nutritional requirements are increased at the end of gestation to meet the demands of the pregnant uterus, pregnant beef cows are susceptible to mobilization of body reserves (mainly fat and amino acids (AAs)) and to alter the metabolism of nutrients in the liver and muscle to support such demands. The objective of this study was to evaluate the effect of CP supplementation on maternal nutrient metabolism in the late gestation of beef cows grazing a low-quality pasture. Forty-three pregnant Nellore cows gestating male fetuses (average age = 6 years; average weight = 544 kg) at 193 ± 30 (mean ± SD) days (d) of gestation were divided into eight groups (experimental units, with four to five cows each). Treatments were (1) control (CON, n = 4): pasture-based (PB) diet without CP supplementation and (2) supplemented (SUP, n = 4): PB diet daily supplemented with 2 g/kg of BW of a 43.5% CP supplement. Liver and skeletal muscle biopsies were performed at 265 days of gestation and samples were collected for mRNA expression. On day 280 of gestation, blood samples were collected to assess plasma levels of AA. The CON-fed cows tended to have greater (P = 0.057) total circulating AA than SUP-fed cows. The circulating glycogenic AA was greater (P = 0.035) in CON than in SUP cows. CON cows was greater for histidine (P = 0.015), methionine (P = 0.007) and alanine (P = 0.036) than SUP cows. The CON- and SUP-fed showed no differences for gluconeogenesis, fatty acid transport and signaling axis markers in the liver. The mRNA expression of markers for skeletal muscle synthesis, p7056k (P = 0.060) and GSK3B (P = 0.096), tended to be greater in cows from CON than SUP group. No differences were found for mRNA expression of markers for skeletal muscle degradation. We conclude that CP supplementation to CP-restricted late-pregnant beef cows reduces the maternal tissue mobilization and changes the profile of plasma circulating AA and the mRNA expression of markers for the synthesis of skeletal muscle tissue.  相似文献   

2.
Intrauterine growth restriction (IUGR) affects approximately 10% of human pregnancies globally and has immediate and life‐long consequences for offspring health. However, the mechanisms underlying the pathogenesis of IUGR and its association with later health and disease outcomes are poorly understood. To address these knowledge gaps, the use of experimental animals is critically important. Since the 50's different environmental, pharmacological, and surgical manipulations have been performed in the rabbit to improve our knowledge of the control of fetal growth, fetal responses to IUGR, and mechanisms by which offspring may be programmed by an adverse gestational environment. The purpose of this review is therefore to summarize the utility of the rabbit as a model for IUGR research. It first summarizes the knowledge of prenatal and postnatal development in the rabbit and how these events relate to developmental milestones in humans. It then describes the methods used to induce IUGR in rabbits and the knowledge gained about the mechanisms determining prenatal and postnatal outcomes of the offspring. Finally, it discusses the application of state of the art approaches in the rabbit, including high‐resolution ultrasound, magnetic resonance imaging, and gene targeting, to gain a deeper integrative understanding of the physiological and molecular events governing the development of IUGR. Overall, we hope to engage and inspire investigators to employ the rabbit as a model organism when studying pregnancy physiology so that we may advance our understanding of mechanisms underlying IUGR and its consequences in humans and other mammalian species.  相似文献   

3.
4.
5.
6.
7.
Advancing age is associated with a progressive loss of skeletal muscle (SkM) mass and function. Given the worldwide aging demographics, this is a major contributor to morbidity, escalating socio‐economic costs and ultimately mortality. Previously, it has been established that a decrease in regenerative capacity in addition to SkM loss with age coincides with suppression of insulin/insulin‐like growth factor signalling pathways. However, genetic or pharmacological modulations of these highly conserved pathways have been observed to significantly enhance life and healthspan in various species, including mammals. This therefore provides a controversial paradigm in which reduced regenerative capacity of skeletal muscle tissue with age potentially promotes longevity of the organism. This paradox will be assessed and considered in the light of the following: (i) the genetic knockout, overexpression and pharmacological models that induce lifespan extension (e.g. IRS‐1/s6K KO, mTOR inhibition) versus the important role of these signalling pathways in SkM growth and adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus their emerging role in SkM regeneration and survival under catabolic stress; (iii) the role of dietary restriction and its impact on longevity versus skeletal muscle mass regulation; (iv) the crosstalk between cellular energy metabolism (AMPK/TSC2/SIRT1) and survival (FOXO) versus growth and repair of SkM (e.g. AMPK vs. mTOR); and (v) the impact of protein feeding in combination with dietary restriction will be discussed as a potential intervention to maintain SkM mass while increasing longevity and enabling healthy aging.  相似文献   

8.

[Purpose]

This study was to investigate changes in BCAT and BCKDH genes by Hindlimb-Suspension (HS) and protein intake composition (casein, Whey protein) in rats.

[Methods]

Following 5-day preliminary feeding, forty-eight male 5 weeks old Sprague Dawley albino rats (110g) divided into 17% protein intake group (24 rats) and 30% protein intake group (24 rats), and each group divided further into Hindlimb-Suspension group (HS; 12 rats) and control group(CON; 12 rats). Eventually, this study was performed with Whey protein intake group (HS; 6 rats, CON; 6 rats) and casein intake group (HS; 6 rats, CON; 6 rats). For analysis purposes, total RNA was extracted from isolated skeletal muscles, and mRNA expression was analyzed using Real Time PCR. Two-way ANOVA was performed to examine the difference in BCATm and BCKDH mRNA expression on protein uptake and myoatrophy. post-hoc test was perform on interaction if any, and significance level was set at p<0.05.

[Results]

In this study, BCATm and BCKDH gene analysis in rat skeletal muscles by hindlimb-suspension and protein intake composition resulted in significant higher BCATm expression in 30% dietary protein group and hindlimb-suspension group that control group. In addition, regarding BCKDH, BCKDH was significantly higher in hindlimb-suspended 30% protein intake group than control group.

[Conclusion]

Overall, protein intake and myoatrophy demonstrated close relationship in skeletal muscles. Therefore, it is likely to affect effectively in prevention or recovery of exercise induced muscle disorder. This effect is considered to be applied to maintain and improve health of not only athletes but also the general public. Additionally it would be applied in convalescent rehabilitation due to skeletal muscle atrophy.  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号