共查询到20条相似文献,搜索用时 0 毫秒
1.
Hooiveld MH Morgan R in der Rieden P Houtzager E Pannese M Damen K Boncinelli E Durston AJ 《The International journal of developmental biology》1999,43(7):665-674
Understanding why metazoan Hox/HOM-C genes are expressed in spatiotemporal sequences showing colinearity with their genomic sequence is a central challenge in developmental biology. Here, we studied the consequences of ectopically expressing Hox genes to investigate whether Hox-Hox interactions might help to order gene expression during very early vertebrate embryogenesis. Our study revealed conserved autoregulatory loops for the Hox4 and Hox7 paralogue groups, detected following ectopic expression Hoxb-4 or HOXD4, and Hoxa-7, respectively. We also detected specific induction of 5' posterior Hox genes; Hoxb-5 to Hoxb-9, following ectopic expression of Hoxb-4/HOXD4; Hoxb-8 and Hoxb-9 following ectopic expression of Hoxa-7. Additionally, we observed specific repression of 3' anterior genes, following ectopic expression of Hox4 and Hox7 paralogues. We found that induction of Hoxb-4 and Hoxb-5 by Hoxb-4 can be direct, whereas induction of Hoxb-7 is indirect, suggesting the possibility of an activating cascade. Finally, we found that activation of Hoxb-4 itself and of posterior Hox genes by Hoxb-4 can be both non-cell-autonomous, as well as direct. We believe that our findings could be important for understanding how a highly ordered Hox expression sequence is set up in the early vertebrate embryo. 相似文献
2.
3.
Evolution of the vertebrate Hox homeobox genes. 总被引:10,自引:0,他引:10
R Krumlauf 《BioEssays : news and reviews in molecular, cellular and developmental biology》1992,14(4):245-252
4.
The role of Hox genes during vertebrate limb development 总被引:3,自引:0,他引:3
The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed. 相似文献
5.
Hox genes in time and space during vertebrate body formation 总被引:3,自引:0,他引:3
Vertebrae display distinct morphological features at different levels of the body axis. Links between collinear Hox gene activation and the progressive mode of body axis elongation have provided a fascinating blueprint of the mechanisms for establishing these morphological identities. In this review, we first discuss the regulation and possible role of collinear Hox gene activation during body formation and then highlight the direct role of Hox genes in controlling cellular movements during gastrulation, therefore contributing to body formation. Additional related research aspects, such as imaging of chromatin regulation, roles of micro RNAs and evolutional findings are also discussed. 相似文献
6.
Polycomb and Trithorax group proteins have been shown to regulate Hox gene expression in flies and mammals, but not in worms. Two reports in this issue of Developmental Cell establish a first link between Polycomb-like genes and Hox gene regulation in C. elegans. However, sequence comparison indicates that these genes may not be homologous to the fly Polycomb genes, suggesting that independent gene recruitment occurred during nematode evolution. 相似文献
7.
The successful organization of the vertebrate body requires that local information in the embryo be translated into a functional, global pattern. Somite cells form the bulk of the musculoskeletal system. Heterotopic transplants of segmental plate along the axis from quail to chick were performed to test the correlation between autonomous morphological patterning and Hox gene expression in somite subpopulations. The data presented strengthen the correlation of Hox gene expression with axial specification and focus on the significance of Hox genes in specific derivatives of the somites. We have defined two anatomical compartments of the body based on the embryonic origin of the cells making up contributing structures: the dorsal compartment, formed from purely somitic cell populations; and the ventral compartment comprising cells from somites and lateral plate. The boundary between these anatomical compartments is termed the somitic frontier. Somitic tissue transplanted between axial levels retains both original Hox expression and morphological identity in the dorsal compartment. In contrast, migrating lateral somitic cells crossing the somitic frontier do not maintain donor Hox expression but apparently adopt the Hox expression of the lateral plate and participate in the morphology appropriate to the host level. Dorsal and ventral compartments, as defined here, have relevance for experimental manipulations that influence somite cell behavior. The correlation of Hox expression profiles and patterning behavior of cells in these two compartments supports the hypothesis of independent Hox codes in paraxial and lateral plate mesoderm. 相似文献
8.
According to the concept of immune surveillance, the appearance of a tumor indicates that it has earlier evaded host defenses and subsequently must have escaped immunity to evolve into a full-blown cancer. Tumor escape mechanisms have focused mainly on mutations of immune and apoptotic pathway genes. However, data obtained over the past few years suggest that epigenetic silencing in cancer may be as frequent a cause of gene inactivation as are mutations. Here, we discuss the evidence that tumor immune evasion is mediated by non-mutational epigenetic events involving chromatin and that epigenetics collaborates with mutations in determining tumor progression. Since epigenetic changes are potentially reversible, the relative contribution of mutations and epigenetics, to the gene defects in any given tumor, may be a factor in determining the efficacy of treatments. We review new developments in basic chromatin mechanisms and in this context describe the rationale for the current use of epigenetic agents in cancer therapy and for a novel epigenetically generated tumor vaccine model. We emphasize that epigenetic cancer treatments are currently a ‘blunt-sword’ and suggest future directions for designing chromatin-based programs of potential value in the diagnosis and treatment of cancer. 相似文献
9.
Epigenetic regulation of genes during development: A conserved theme from flies to mammals 总被引:1,自引:0,他引:1
Eukaryotic genome is organized in form of chromatin within the nucleus. This organization is important for compaction of DNA as well as for the proper expression of the genes. During early embryonic development, genomic packaging receives variety of signals to eventually set up cell type specific expression patterns of genes. This process of regulated chromatinization leads to "cell type specific epigenomes". The expression states attained during differentiation process need to be maintained subsequently throughout the life of the organism. Epigenetie modifications are responsible for chromatin dependent regulatory mechanism and play a key role in maintenance of the expression state-a process referred to as cellular memory. Another key feature in the packaging of the genome is formation of chro- matin domains that are thought to be structural as well as functional units of the higher order chromatin organization. Boundary elements that function to define such domains set the limits of regulatory elements and that of epigenetie modifications. This connection of epige- netic modification, chromatin structure and genome organization has emerged from several studies. Hox genes are among the best studied in this context and have led to the significant understanding of the epigenetic regulation during development. Here we discuss the evolu- tionarily conserved features of epigenetic mechanisms emerged from studies on homeotic gene clusters. 相似文献
10.
Hox patterning of the vertebrate rib cage 总被引:2,自引:0,他引:2
McIntyre DC Rakshit S Yallowitz AR Loken L Jeannotte L Capecchi MR Wellik DM 《Development (Cambridge, England)》2007,134(16):2981-2989
Unlike the rest of the axial skeleton, which develops solely from somitic mesoderm, patterning of the rib cage is complicated by its derivation from two distinct tissues. The thoracic skeleton is derived from both somitic mesoderm, which forms the vertebral bodies and ribs, and from lateral plate mesoderm, which forms the sternum. By generating mouse mutants in Hox5, Hox6 and Hox9 paralogous group genes, along with a dissection of the Hox10 and Hox11 group mutants, several important conclusions regarding the nature of the ;Hox code' in rib cage and axial skeleton development are revealed. First, axial patterning is consistently coded by the unique and redundant functions of Hox paralogous groups throughout the axial skeleton. Loss of paralogous function leads to anterior homeotic transformations of colinear regions throughout the somite-derived axial skeleton. In the thoracic region, Hox genes pattern the lateral plate-derived sternum in a non-colinear manner, independent from the patterning of the somite-derived vertebrae and vertebral ribs. Finally, between adjacent sets of paralogous mutants, the regions of vertebral phenotypes overlap considerably; however, each paralogous group imparts unique morphologies within these regions. In all cases examined, the next-most posterior Hox paralogous group does not prevent the function of the more-anterior Hox group in axial patterning. Thus, the ;Hox code' in somitic mesoderm is the result of the distinct, graded effects of two or more Hox paralogous groups functioning in any anteroposterior location. 相似文献
11.
In vertebrates and the cephalochordate, amphioxus, the closest vertebrate
relative, Hox genes are linked in a single cluster. Accompanying the
emergence of higher vertebrates, the Hox gene cluster duplicated in either
a single step or multiple steps, resulting in the four-cluster state
present in teleosts and tetrapods. Mammalian Hox clusters (designated A, B,
C, and D) extend over 100 kb and are located on four different chromosomes.
Reconstructing the history of the duplications and its relation to
vertebrate evolution has been problematic due to the lack of alignable
sequence information. In this study, the problem was approached by
conducting a statistical analysis of sequences from the fibrillar-type
collagens (I, II, III, and IV), genes closely linked to each Hox cluster
which likely share the same duplication history as the Hox genes. We find
statistical support for the hypothesis that the cluster duplication
occurred as multiple distinct events and that the four-cluster situation
arose by a three- step sequential process.
相似文献
12.
Sea urchin Hox genes: insights into the ancestral Hox cluster 总被引:3,自引:0,他引:3
We describe the Hox cluster in the radially symmetric sea urchin and
compare our findings to what is known from clusters in bilaterally
symmetric animals. Several Hox genes from the direct-developing sea urchin
Heliocidaris erythrogramma are described. CHEF gel analysis shows that the
Hox genes are clustered on a < or = 300 kilobase (kb) fragment of DNA,
and only a single cluster is present, as in lower chordates and other
nonvertebrate metazoans. Phylogenetic analyses of sea urchin, amphioxus,
Drosophila, and selected vertebrate Hox genes confirm that the H.
erythrogramma genes, and others previously cloned from other sea urchins,
belong to anterior, central, and posterior groups. Despite their radial
body plan and lack of cephalization, echinoderms retain at least one of the
anterior group Hox genes, an orthologue of Hox3. The structure of the
echinoderm Hox cluster suggests that the ancestral deuterostome had a Hox
cluster more similar to the current chordate cluster than was expected Sea
urchins have at least three Abd-B type genes, suggesting that Abd-B
expansion began before the radiation of deuterostomes.
相似文献
13.
The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation. 相似文献
14.
Annelida is a lophotrochozoan phylum whose members have a high degree of diversity in body plan morphology, reproductive strategies and ecological niches among others.Of the two traditional classes pertaining to the phylum Annelida (Polychaete and Clitellata), the structure and function of the Hox genes has not been clearly defined within the Oligochaeta class. Using a PCR-based survey, we were able to identify five new Hox genes from the earthworm Perionyx excavatus: a Hox3 gene (Pex-Hox3b), two Dfd genes (Pex-Lox6 and Pex-Lox18), and two posterior genes (Pex-post1 and -post2a). Our result suggests that the eleven earthworm Hox genes contain at least four paralog groups (PG) that have duplicated. We found the clitellates-diagnostic signature residues and annelid signature motif. Also, we show by semi-quantitative RT-PCR that duplicated Hox gene orthologs are differentially expressed in six different anterior-posterior body regions. These results provide essential data for comparative evolution of the Hox cluster within the Annelida. 相似文献
15.
16.
17.
During vertebrate limb development, Hoxd genes are transcribed in two temporal phases; an early wave controls growth and polarity up to the forearm and a late wave patterns the digits. In this issue of Developmental Cell, Tarchini and Duboule (2006) report that two opposite regulatory modules direct early collinear expression of Hoxd genes. 相似文献
18.
M. Yasuda 《Biological cybernetics》1971,9(1):26-30
In this paper a mathematical model of the retina was proposed to clarify the spatio-temporal information processing mechanism in the retina of vertebrates. In order to explain spatio-temporal characteristics of an on-center receptive field of a ganglion cell, excitatory and inhibitory cell layers were introduced of which time lags increased with the lateral distance from a point of stimulation. The characteristics of this model were found to agree well with the physiological data: e.g., this model shows on-response to the input stimulus given on the center, off-response to the input on the surround, and on-off response to the input on the border between on- and off-response regions of the on-center field. 相似文献
19.
Lohmann I 《Current biology : CB》2006,16(23):R988-R989
A recent study for the first time unravels a complete Hox regulatory network sufficient for the specification of a simple organ in Drosophila, linking Hox output to one specific group of executive genes, the realisators. As these genes have a direct effect on cellular functions and are required in most cell types, Hox genes may ultimately execute their function in controlling segmental fate by fine-tuning the spatial and temporal expression levels of these realisators. 相似文献
20.
Patterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest. 总被引:8,自引:0,他引:8
The structures of the face in vertebrates are largely derived from neural crest. There is some evidence to suggest that the form of the facial pattern is determined by the crest, and that it is specified before migration as to the structures that is is able to form. The neural crest is able to control the form of surrounding, non-neural crest tissues by an instructive interaction. Some of this cranial crest is derived from a region of the hindbrain that expresses Hox 2 homeobox genes in an overlapping and segment-restricted pattern. We have found that neurogenic and mesenchymal neural crest expresses Hox 2 genes from its point of origin beside the neural plate, during migration and after migration has ceased and that rhombomeres 3 and 5 do not have any expressing neural crest beside them. Each branchial arch expresses a different combination or code of Hox genes in a segment-restricted way. The surface ectoderm over the arches initially does not express Hox genes, and later adopts an expression pattern that reflects that of neural crest that has come to underlie it. We suggest that initially the neural plate and neural crest are spatially specified, while the surface ectoderm is unpatterned. Subsequently some positional information could be transferred to the surface ectoderm as a result of an interaction with the neural crest. Given that the role of the homologous genes in insects is position specification, and that neural crest is imprinted before migration, we suggest that Hox 2 genes are providing part of this positional information to the neural crest and hence are involved in patterning the structures of the branchial arches. 相似文献