首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ras proteins are essential components of signal transduction pathways that control cell proliferation, differentiation, and survival. It is well recognized that the functional versatility of Ras proteins is accomplished through their differential compartmentalization, but the mechanisms that control their spatial segregation are not fully understood. Here we show that HRas is subject to ubiquitin conjugation, whereas KRas is refractory to this modification. The membrane-anchoring domain of HRas is necessary and sufficient to direct the mono- and diubiquitination of HRas. Ubiquitin attachment to HRas stabilizes its association with endosomes and modulates its ability to activate the Raf/MAPK signaling pathway. Therefore, differential ubiquitination of Ras proteins may control their location-specific signaling activities.  相似文献   

2.
The ras proto-oncogenes, of which there are four isoforms, are molecular switches that function in signal transduction pathways to control cell differentiation, proliferation, and survival. How the Ras isoforms orchestrate cellular processes that affect behavior is poorly understood. Further, why cells express two or more Ras isoforms is unknown. Here, using a genetically defined system, we show that the presence of both wild-type KRas and NRas isoforms is required for transformation because they perform distinct nonoverlapping functions: wild-type NRas regulates adhesion, and KRas coordinates motility. Remarkably, we find that Ras isoforms achieve functional specificity by engaging different signaling pathways to affect the same cellular processes, thereby coordinating cellular outcome. Although we find that signaling from both isoforms intersects in actin and microtubule cytoskeletons, our results suggest that KRas signals through Akt and Cdc42 while NRas signals through Raf and RhoA. Our analyses suggest a previously unappreciated convergence of different Ras isoforms on the dynamics of the processes involved in transformation.  相似文献   

3.
Jin T  Ding Q  Huang H  Xu D  Jiang Y  Zhou B  Li Z  Jiang X  He J  Liu W  Zhang Y  Pan Y  Wang Z  Thomas WG  Chen Y 《Cell research》2012,22(4):661-676
Ras plays a pivotal role in many cellular activities, and its subcellular compartmentalization provides spatial and temporal selectivity. Here we report a mode of spatial regulation of Ras signaling in the Golgi apparatus by two highly homologous proteins PAQR10 and PAQR11 of the progestin and AdipoQ receptors family. PAQR10 and PAQR11 are exclusively localized in the Golgi apparatus. Overexpression of PAQR10/PAQR11 stimulates basal and EGF-induced ERK phosphorylation and increases the expression of ERK target genes in a dose-dependent manner. Overexpression of PAQR10/PAQR11 markedly elevates Golgi localization of HRas, NRas and KRas4A, but not KRas4B. PAQR10 and PAQR11 can also interact with HRas, NRas and KRas4A, but not KRas4B. The increased Ras protein at the Golgi apparatus by overexpression of PAQR10/PAQR11 is in an active state. Consistently, knockdown of PAQR10 and PAQR11 reduces EGF-stimulated ERK phosphorylation and Ras activation at the Golgi apparatus. Intriguingly, PAQR10 and PAQR11 are able to interact with RasGRP1, a guanine nucleotide exchange protein of Ras, and increase Golgi localization of RasGRP1. The C1 domain of RasGRP1 is both necessary and sufficient for the interaction of RasGRP1 with PAQR10/PAQR11. The simulation of ERK phosphorylation by overexpressed PAQR10/PAQR11 is abrogated by downregulation of RasGRP1. Furthermore, differentiation of PC12 cells is significantly enhanced by overexpression of PAQR10/PAQR11. Collectively, this study uncovers a new paradigm of spatial regulation of Ras signaling in the Golgi apparatus by PAQR10 and PAQR11.  相似文献   

4.
《Biophysical journal》2022,121(19):3616-3629
HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.  相似文献   

5.
目的:传统Ras家族由Kras,Hras和Nras基因组成,这类基因的点突变经常在人类肿瘤中发现,突变热点位于12,13,61位密码子。ERas基因是2003年在鼠胚胎干(ES)细胞中发现的,其cDNA编码的蛋白与Kras,Hras和Nras分别有46%,43%和47%的相似性,故属于新的Ras家族成员,近几年发现ERas基因的表达与胃癌密切相关,而传统Ras基因在胃癌细胞中的表达及突变情况系统报道较少,本文旨在研究传统Ras基因Kras,Hras,Nras及其家族新成员ERas基因在胃癌细胞中的表达和突变情况。方法:选用7株不同来源不同分化程度的胃癌细胞系,利用RT—PCR及real-timePCR检测Ras基因在这些胃癌细胞系中的表达,并通过测序对传统Ras基因突变热点12,13,61位密码子及ERas基因全长进行突变分析。结果:QRas基因在这些胃癌细胞系中均有不同程度的表达,其中Hras和Nms基因在各株细胞中表达水平均一,而Kras和ERas基因则呈差异性表达;②在这些胃癌细胞中传统Ras基因突变热点12,13,61位密码子不存在突变,ERas基因全长亦未检测到突变.③发现Kras基因一新的剪接型,特点为第一、三外显子直接拼接,缺失第二外显子,命名为Kras△E2。结论:与在其他肿瘤中不同,传统Ras基因在胃癌细胞中不存在突变热点,家族新成员ERas基因全长亦无突变,在国际上首次报道新剪接型Kras△E2,从而得出创新性结论:Ras基因家族在胃癌细胞中并不是通过热点突变导致持续活化而致癌,而可能是通过ERas基因表达量的调节或形成新的剪接型KrasAE2而致癌。另外,Kras基因是一被受国际关注的肿瘤基因,新剪接型的发现可能会对Kras基因致癌机制产生新的认识,意义重大。  相似文献   

6.
The Ras/MAPK pathway regulates synaptic plasticity and cell survival in neurons of the central nervous system. Here, we show that KRas, but not HRas, acutely translocates from the plasma membrane (PM) to the Golgi complex and early/recycling endosomes in response to neuronal activity. Translocation is reversible and mediated by the polybasic-prenyl membrane targeting motif of KRas. We provide evidence that KRas translocation occurs through sequestration of the polybasic-prenyl motif by Ca2+/calmodulin (Ca2+/CaM) and subsequent release of KRas from the PM, in a process reminiscent of GDP dissociation inhibitor-mediated membrane recycling of Rab and Rho GTPases. KRas translocation was accompanied by partial intracellular redistribution of its activity. We conclude that the polybasic-prenyl motif acts as a Ca2+/CaM-regulated molecular switch that controls PM concentration of KRas and redistributes its activity to internal sites. Our data thus define a novel signaling mechanism that differentially regulates KRas and HRas localization and activity in neurons.  相似文献   

7.
Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes.  相似文献   

8.
Calmodulin (CaM) binds only oncogenic KRas, but not HRas or NRas, and thus contributes only to KRAS-driven cancers. How CaM interacts with KRas and how it boosts KRAS cancers are among the most coveted aims in cancer biology. Here we address this question, and further ask: Are there proteins that can substitute for CaM in HRAS- and NRAS-driven cancers? Can scaffolding protein IQGAP1 be one? Data suggest that formation of a CaM–KRas–PI3Kα ternary complex promotes full PI3Kα activation, and thereby potent PI3Kα/Akt/mTOR proliferative signaling. CaM binds PI3Kα at the cSH2 and nSH2 domains of its regulatory p85 subunit; the WW domain of IQGAP1 binds cSH2. This raises the question whether IQGAP1, together with an oncogenic Ras isoform, can partially activate PI3Kα. Activated, membrane-bound PI3Kα generates PIP3. CaM shuttles Akt to the plasma membrane; CaM's release and concomitant phosphoinositide binding stimulates Akt activation. Notably, IQGAP1 directly interacts with, and helps juxtapose, PI3Kα and Akt as well as mTOR. Our mechanistic review aims to illuminate CaM's actions, and help decipher how oncogenic Ras isoforms – not only KRas4B – can activate the PI3Kα/Akt/mTOR pathway at the membrane and innovate drug discovery, including blocking the PI3Kα–IQGAP1 interaction in HRAS- and NRAS-driven cancers.  相似文献   

9.
The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC(16) and DiIC(18). However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-beta-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane.  相似文献   

10.
刘阳  王慧萍 《生物磁学》2014,(9):1782-1785
胚胎干细胞(EScells)为多能干细胞,来自哺乳动物胚胎早期。ES细胞表达的Ras(ERas)基因促进其体外增殖和肿瘤形成。该基因产物Ras蛋白关联和激活多个下游效应,调控多种细胞反应来参与细胞增殖,存活与分化。ERas基因位于x染色体短臂(Xpll.23),其cDNA编码的蛋白包含227个氨基酸,与传统ras基因Hras,Kras和Nras分别有43%,46%和47%的相似性,故属于新的ras家族成员,与传统ras基因不同的是ERas基因非常活跃但不带有任何突变。近几年发现ERas基因的表达与胃癌密切相关,本文就ERas基因在人胃癌细胞和组织中的表达及其机制的最新进展做一综述,主要包括三个方面:1,ERas基因在胃癌细胞和组织中的表达情况及其功能。2,ERas基因在胃癌细胞中的表观遗传调控。3,ERas基因与胃癌肝和淋巴结转移的关系。  相似文献   

11.
C Lv  Y Hong  L Miao  C Li  G Xu  S Wei  B Wang  C Huang  B Jiao 《Cell death & disease》2013,4(12):e952
Chemotherapy remains the common therapeutic for patients with lung cancer. Novel, selective antitumor agents are pressingly needed. This study is the first to investigate a different, however, effective antitumor drug candidate Wentilactone A (WA) for its development as a novel agent. In NCI-H460 and NCI-H446 cell lines, WA triggered G2/M phase arrest and mitochondrial-related apoptosis, accompanying the accumulation of reactive oxygen species (ROS). It also induced activation of mitogen-activated protein kinase and p53 and increased expression of p21. When we pre-treated cells with ERK, JNK, p38, p53 inhibitor or NAC followed by WA treatment, only ERK and p53 inhibitors blocked WA-induced apoptosis and G2/M arrest. We further observed Ras (HRas, KRas and NRas) and Raf activation, and found that WA treatment increased HRas–Raf activation. Knockdown of HRas by using small interfering RNA (siRNA) abolished WA-induced apoptosis and G2/M arrest. HRas siRNA also halted Raf, ERK, p53 activation and p21 accumulation. Molecular docking analysis suggested that WA could bind to HRas-GTP, causing accumulation of Ras-GTP and excessive activation of Raf/ERK/p53-p21. The direct binding affinity was confirmed by surface plasmon resonance (SPR). In vivo, WA suppressed tumor growth without adverse toxicity and presented the same mechanism as that in vitro. Taken together, these findings suggest WA as a promising novel, potent and selective antitumor drug candidate for lung cancer.  相似文献   

12.
The plasma membrane is a highly complex, organized structure where the lateral organization of signaling proteins is tightly regulated. In the case of Ras proteins, it has been suggested that the differential activity of the various isoforms is due to protein localization in separate membrane compartments. To date, direct visualization of such compartmentalization has been achieved only by electron microscopy on membrane sheets. Here, we combine photoactivated light microscopy with quantitative statistical analysis to visualize protein distribution in intact cells. In particular, we focus on the localization of HRas and its minimal anchoring domain, CAAX. We demonstrate the existence of a complex partitioning behavior, where small domains coexist with larger ones. The protein content in these domains varied from two molecules to tens of molecules. We found that 40% of CAAX and 60% of HRas were localized in domains. Subsequently, we were able to manipulate protein distributions by inducing coalescence of supposedly cholesterol-enriched domains. Clustering resulted in an increase of the localized fraction by 15%.  相似文献   

13.
Ras proteins are oncoproteins which play a pivotal role in cellular signaling pathways. All Ras proteins' signaling strongly depends on their correct localization in the cell membrane. Over 30% of cancers are driven by mutant Ras proteins, and KRas4B is the Ras isoform most frequently mutated. C6-ceramide has been shown to inhibit the growth activity of KRas4B mutated cells. However, the mechanism underlying this inhibition remains elusive. Here, we established a heterogeneous model biomembrane containing C6-ceramide. C6-ceramide incorporation does not disrupt the lipid membrane. Addition of KRas4B leads to drastic changes in the lateral membrane organization of the membrane, however. In contrast to the partitioning behavior in other membranes, KRas4B forms small, monodisperse nanoclusters dispersed in a fluid-like environment, in all likelihood induced by some kind of lipid sorting mechanism. Fluorescence cross-correlation data indicate no direct interaction between C6-ceramide and KRas4B, suggesting that KRas4B essentially recruits other lipids. A FRET-based binding assay reveals that the stability of KRas4B proteins inserted into the membrane containing C6-ceramide is reduced. Based on the combined results obtained, we postulate a molecular mechanism for the inhibition of KRas4B mutated cells' activity through C6-ceramide.  相似文献   

14.
Here we demonstrate a new paradigm in redox signaling, whereby oxidants resulting from metabolic stress directly alter protein palmitoylation by oxidizing reactive cysteine thiolates. In mice fed a high-fat, high-sucrose diet and in cultured endothelial cells (ECs) treated with high palmitate and high glucose (HPHG), there was decreased HRas palmitoylation on Cys181/184 (61±24% decrease for cardiac tissue and 38±7.0% in ECs). This was due to oxidation of Cys181/184, detected using matrix-assisted laser desorption/ionization time of flight (MALDI TOF)-TOF. Decrease in HRas palmitoylation affected its compartmentalization and Ras binding domain binding activity, with a shift from plasma membrane tethering to Golgi localization. Loss of plasma membrane-bound HRas decreased growth factor-stimulated ERK phosphorylation (84±8.6% decrease) and increased apoptotic signaling (24±6.5-fold increase) after HPHG treatment that was prevented by overexpressing wild-type but not C181/184S HRas. The essential role of HRas in metabolic stress was made evident by the similar effects of expressing an inactive dominant negative N17-HRas or a MEK inhibitor. Furthermore, the relevance of thiol oxidation was demonstrated by overexpressing manganese superoxide dismutase, which improved HRas palmitoylation and ERK phosphorylation, while lessening apoptosis in HPHG treated ECs.  相似文献   

15.
Ras proteins are compartmentalized by dynamic interactions with both plasma membrane microdomains and intracellular membranes. The mechanisms underlying Ras compartmentalization involve a series of protein/lipid, lipid/lipid and cytoskeleton interactions, resulting in the generation of discrete microdomains from which Ras operates. Segregation of Ras proteins to these different platforms regulates the formation of Ras signaling complexes and the generation of discrete signal outputs. This temporal and spatial modulation of Ras signal transduction provides a mechanism for the generation of different biological outcomes from different Ras isoforms, as well as flexibility in the signal output from a single activated isoform.  相似文献   

16.
《Biophysical journal》2022,121(19):3730-3744
Ras dimers have been proposed as building blocks for initiating the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cellular signaling pathway. To better examine the structure of possible dimer interfaces, the dynamics of Ras dimerization, and its potential signaling consequences, we performed molecular dynamics simulations totaling 1 ms of sampling, using an all-atom model of two full-length, farnesylated, guanosine triphosphate (GTP)-bound, wild-type KRas4b proteins diffusing on 29%POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine)-mixed POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Our simulations unveil an ensemble of thermodynamically weak KRas dimers spanning multiple conformations. The most stable conformations, having the largest interface areas, involve helix α2 and a hypervariable region (HVR). Among the dimer conformations, we found that the HVR of each KRas has frequent interactions with various parts of the dimer, thus potentially mediating the dimerization. Some dimer configurations have one KRas G-domain elevated above the lipid bilayer surface by residing on top of the other G-domain, thus likely contributing to the recruitment of cytosolic Raf kinases in the context of a stably formed multi-protein complex. We identified a variant of the α45 KRas-dimer interface that is similar to the interfaces obtained with fluorescence resonance energy transfer (FRET) data of HRas on lipid bilayers. Interestingly, we found two arginine fingers, R68 and R149, that directly interact with the beta-phosphate of the GTP bound in KRas, in a manner similar to what is observed in a crystal structure of GAP-HRas complex, which can facilitate the GTP hydrolysis via the arginine finger of GTPase-activating protein (GAP).  相似文献   

17.
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.  相似文献   

18.
Over the past decade immuno-spin trapping (IST) has been used to detect and identify protein radical sites in numerous heme and metalloproteins. To date, however, the technique has had little application toward nonmetalloproteins. In this study, we demonstrate the successful application of IST in a system free of transition metals and present the first conclusive evidence of (?)NO-mediated protein radical formation in the HRas GTPase. HRas is a nonmetalloprotein that plays a critical role in regulating cell-growth control. Protein radical formation in Ras GTPases has long been suspected of initiating premature release of bound guanine nucleotide. This action results in altered Ras activity both in vitro and in vivo. As described herein, successful application of IST may provide a means for detecting and identifying radical-mediated Ras activation in many different cancers and disease states in which Ras GTPases play an important role.  相似文献   

19.
Ras isoform-specific signaling from the plasma membrane appears to be regulated by interactions with distinct functional microdomains. We have developed protocols allowing the generation of 2-D spatial maps describing cell surface microdomain distributions. The combined electron microscopic (EM)-statistics approach provides nanometer scale resolution allowing both inner and outer leaflet domains to be visualized and cross-correlated with each other or with a protein of interest. In particular, the technique has allowed the interaction of Ras isoforms with signaling microdomains and proteins regulating these compartments to be screened. By allowing detailed monitoring of cell surface organization and compartmentalization, the approach has widespread potential for studies of plasma membrane-dependent cell biology, including regulated signaling and membrane trafficking.  相似文献   

20.
Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes (independently of calmodulin and protein kinase C phosphorylation) through a clathrin-dependent pathway. From early endosomes, KRas but not Harvey Ras or neuroblastoma Ras is sorted and transported to late endosomes (LEs) and lysosomes. Using yellow fluorescent protein–Raf1 and the Raichu-KRas probe, we identified for the first time in vivo–active KRas on Rab7 LEs, eliciting a signal output through Raf1. On these LEs, we also identified the p14–MP1 scaffolding complex and activated extracellular signal-regulated kinase 1/2. Abrogation of lysosomal function leads to a sustained late endosomal mitogen-activated protein kinase signal output. Altogether, this study reveals novel aspects about KRas intracellular trafficking and signaling, shedding new light on the mechanisms controlling Ras regulation in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号