首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

2.
3-Epivitamin D3, the 3 alpha epimer of vitamin D3, was synthesized, and its biological activity in the rat was evaluated. It was found to be approximately 4 times less active on a weight basis than vitamin D3 with respect to intestinal calcium transport, bone calcium mobilization, and calcification score as determined by the line-test assay. Tritiated 3-epivitamin D3 was prepared, and its metabolism in the rat was compared with that of vitamin D3 to investigate the reasons for this diminished activity. 3-Epivitamin D3 was converted to two polar metabolites, for which the chromatographic properties and the origin of biosynthesis (in the liver and kidney, respectively) correspond to 25-hydroxy-3-epivitamin D3 and 1 alpha,25-dihydroxy-3-epivitamin D3. The fact that the concentration of 1 alpha,25-dihydroxy-3-epivitamin D3 in the intestine is half that of 1 alpha,25-dihydroxyvitamin D3 may be one explanation for the reduced biological activity of this epimer.  相似文献   

3.
It is well documented that Vitamin D3 metabolites and synthetic analogs are metabolized to their epimers of the hydroxyl group at C-3 of the A-ring. We investigated the C-3 epimerization of Vitamin D3 metabolites in various cultured cells and basic properties of the enzyme responsible for the C-3 epimerization. 1alpha,25-Dihydroxyvitamin D3 [1alpha,25(OH)2D3], 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were metabolized to the respective C-3 epimers in UMR-106 (rat osteosarcoma), MG-63 (human osteosarcoma), Caco-2 (human colon adenocarcinoma), LLC-PK1 (porcine kidney) and HepG2 (human hepatoblastoma)] cells, although the differences existed in the amount of each C-3 epimer formed with different cell types. In terms of maximum velocity (Vmax) and Michaelis constant (Km) values for the C-3 epimerization in microsome fraction of UMR-106 cells, 25(OH)D3 exhibited the highest specificity for the C-3 epimerization among 1alpha,25(OH)2D3, 25(OH)D3 and 24,25(OH)2D3. C-3 epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha --> beta) -hydroxysteroid epimerase (HSE) catalyzed the C-3 epimerization in vitro. Based on these results, the enzyme responsible for the C-3 epimerization of Vitamin D3 are thought to be different from already-known cytochrome P450-related Vitamin D metabolic enzymes and HSE.  相似文献   

4.
The interval between the D3S2 and D3S3 loci on human chromosome 3p is a frequent site of deletions in a number of different cancers and contains the most common fragile site in man. Both loci have been physically mapped to 3p but because heterozygosity for D3S3 is so infrequent, recombination between them could not be determined accurately by using family studies. Sperm typing can measure recombination between DNA polymorphisms even in a single individual and thus can make use of polymorphisms with a low PIC. The recombination fraction between D3S2 and D3S3 was estimated to be 0.28 based on analyzing 189 and 77 sperm from two doubly heterozygous donors, respectively. These results demonstrate one of the ways in which sperm typing can complement pedigree analysis in constructing genetic maps.  相似文献   

5.
The time course of in vivo metabolism of 24,25-dihydroxyvitamin D3 in rats has been examined. Several tissues were surveyed in an effort to discover new metabolites of 24,25-dihydroxyvitamin D3 and to estimate the concentrations of previously identified metabolites. Rapidly growing male rats were dosed with 24,25-dihydroxyvitamin D3 orally until plasma concentrations of 24,25-dihydroxyvitamin D3 were at steady state. 24,25-Dihydroxyvitamin [3-3H]D3 was then administered. At 10 min and 1, 6, 15, 24, 96, and 192 h after dosing, the animals were killed, and plasma, liver, intestine, and bones were analyzed with a newly developed gradient straight-phase high performance liquid chromatography system. The high performance liquid chromatography system is capable of base-line resolution of most of the major vitamin D metabolites. 24,25-Dihydroxyvitamin D3 clearance from plasma, liver, and kidney but not intestine followed a two-compartment model. 24,25-Dihydroxyvitamin D3 disappeared from plasma with a half-life of 0.55 h (fast phase) and 73.8 h (slow phase). Only two lipid-soluble metabolites of 24,25-dihydroxyvitamin D3 were detected: 24-oxo-25-hydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3. These compounds circulate at very low concentrations in the plasma (50 pg/ml of plasma).  相似文献   

6.
Monoclonal antibody 3D9.3 (MAb 3D9.3) reacts with the surface of Candida albicans germ tubes and recognizes a protein epitope. We used a two-step chromatography procedure to purify and identify the antigen (3D9) from C. albicans strain 66396 germ tubes. MAb 3D9.3 recognized two intense protein bands at 140 and 180 kDa. A comparative analysis between theoretical and experimental mass spectrum peaks showed that both bands corresponded to Als3. This conclusion was supported by lack of reactivity between MAb 3D9.3 and an als3 Δ /als3 Δ mutant strain, and the fact that an immunoglobulin preparation enriched for Als3 specificity recognized the purified 3D9 antigen. PCR demonstrated that C. albicans strain 66396 has two different-sized ALS3 alleles that correspond to the two purified protein bands. Strain- and species-specificity of the 3D9 epitope were studied with various C. albicans strains and Candida species, such as closely related Candida dubliniensis . The 3D9 epitope was detected only in C. albicans , demonstrating the utility of MAb 3D9.3 for differentiation between C. albicans and C. dubliniensis . Adhesion assays demonstrated that MAb 3D9.3 blocks adhesion of C. albicans germ tubes to human buccal epithelial cells and vascular endothelial cells.  相似文献   

7.
Plasma 25-(OH)D3 concentrations following an intra-portal injection of 100 micrograms Kg-1 of D3 or 100 micrograms Kg-1 of 25-(OH)D3 was studied in D depleted rats fed ethanol diet and pair-fed controls. When challenged with D3, the rats under ethanol feeding were unable to increase their plasma 25(OH)D3 concentrations above those observed in controls. Plasma 25(OH)D3 concentrations following 25(OH)D3 administration were however lowered by the ethanol treatment 3 and 96 hr after 25(OH)D3 administration (p less than 0.05). These results suggest that animals chronically exposed to ethanol have an unaltered plasma 25(OH)D3 response following a pharmacological dose of D3 while the drug treatment contributes to an accelerated plasma 25(OH)D3 disappearance following 25(OH)D3.The former observations also suggest that D3 does not seem to be a high affinity substrate for the ethanol-induced cytochrome P-450.  相似文献   

8.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

9.
10.
Drosophila 14-3-3zeta (D14-3-3zeta) modulates the activity of the Slowpoke calcium-dependent potassium channel (dSlo) by interacting with the dSlo binding protein, Slob. We show here that D14-3-3zeta forms dimers in vitro. Site-directed mutations in its putative dimerization interface result in a dimerization-deficient form of D14-3-3zeta. Both the wild-type and dimerization-deficient forms of D14-3-3zeta bind to Slob with similar affinity and form complexes with dSlo. When dSlo and Slob are expressed in mammalian cells, the dSlo channel activity is similarly modulated by co-expression of either the wild-type or the dimerization-deficient form of D14-3-3zeta. In addition, dSlo is still modulated by wild-type D14-3-3zeta in the presence of a 14-3-3 mutant, which does not itself bind to Slob but forms heterodimers with the wild-type 14-3-3. These data, taken together, suggest that monomeric D14-3-3zeta is capable of modulating dSlo channel activity in this regulatory complex.  相似文献   

11.
The effect of 24,25(OH)2D3 on 1,25(OH)2D3-induced hypercalcemia was studied in normal rats. Serum (S) levels and urinary excretion of Ca2+ (UCaV) were measured in (a) control rats, (b) rats receiving a daily sc injection of 54 ng 1,25(OH)2D3, (c) rats receiving 24,25(OH)2D3 in the same dose and same manner, and (d) rats receiving 1,25(OH)2D3 + 24,25(OH)2D3. The animals were housed in metabolic cages and 24-hr urine specimens were collected. After 24 hr SCa2+ increased similarly with 1,25(OH)2D3 and with 1,25(OH)2D3 + 24,25(OH)2D3, while 24,25(OH)2D3 alone did not change SCa2+. UCaV after 24 hr increased significantly less (P less than 0.025) with 1,25(OH)2D3 + 24,25(OH)2D3 than with 1,25(OH)2D3 alone. After 5 days of 1,25(OH)2D3, SCa2+ rose from 5.1 +/- 0.15 to 6.29 +/- 0.08 whereas 1,25(OH)2D3 + 24,25(OH)2D3 effected a greater increase in SCa2+ up to 6.63 +/- 0.09 (P less than 0.01). 24,25(OH)2D3 alone did not change SCa2+. UCaV after 5 days of treatment rose similarly with 1,25(OH)2D3 and with 1,25(OH)2D3 + 24,25(OH)2D3. After 10 days of 1,25(OH)2D3 SCa2+ was 6.17 +/- 0.15 meq/liter while with the combination SCa2+ rose to 6.74 +/- 0.2 (P less than 0.025). 24,25(OH)2D3 alone did not change SCa2+. These results show that (a) 24,25(OH)2D3 alone does not alter SCa2+ in normal rats, (b) combined administration of 1,25(OH)2D3 + 24,25(OH)2D3 enhances the hypercalcemic response to 1,25(OH)2D3 without a parallel increase in UCaV, and (c) it is suggested that the effect of 24,25(OH)2D3 on serum Ca2+ level, at least partly, may result from its hypocalciuric effect.  相似文献   

12.
3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.  相似文献   

13.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cell types (cardiac and skeletal). Recently, we identified an autosomal dominant form of limb girdle muscular dystrophy in humans that is due to mutations within exon 2 of the caveolin-3 gene (3p25). However, the detailed location of the human caveolin-3 gene and its position with regard to neighboring genes remains unknown. Here, we have isolated three independent BAC clones containing the human caveolin-3 gene. Using a PCR-based approach, we determined that these clones contain both exons 1 and 2 of the human caveolin-3 gene. In addition, we performed microsatellite marker analysis of these BAC clones, using a panel of 13 markers that are known to map within the 3p25 region. Our results indicate that these BAC clones contain the following three markers: D3S18, SHGC-1079 (also known as D3S4163) and D3S4539. Interestingly, D3S18 is a marker for two known human diseases, von Hippel-Lindau disease and 3p-syndrome. As D3S4163 and D3S4539 are known to map in the vicinity of the 3' end of the human oxytocin receptor gene, we determined if these caveolin-3 positive BACs also contain the oxytocin receptor gene. We show that (i) these BACs contain all four exons of the oxytocin receptor gene and (ii) that the genes encoding caveolin-3 and the oxytocin receptor are located approximately 7-10 kb apart and in the opposite orientation. As 3p-syndrome is characterized by cardiac septal defects and caveolin-3 is expressed primarily in the heart and skeletal muscle, caveolin-3 is a candidate gene that may be deleted in 3p-syndrome.  相似文献   

14.
1alpha-Hydroxy [6-3H]vitamin D3 has been synthesized with a specific activity of 4 Ci/mmol, and its metabolism in rats has been studied. It is rapidly converted to 1alpha,25-dihydroxy [6-3H]vitamin D3 in vivo. Following an intravenous or oral dose, a maximal concentration of 1alpha,25-dihydroxy [6-3H]vitamin D3 is found 2 and 4 hours, respectively, before the maximal intestinal calcium transport response is observed. Similarly, 1alpha,25-dihydroxy[6-3H]vitamin D3 accumulation in bone precedes the bone calcium mobilization response. It appears, therefore, that the biological activity of 1alpha-hydroxyvitamin D3 is largely, if not exclusively, due to its conversion to 1alpha,25-dihydroxy[6-3H]vitamin D3 1alpha-Hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appear in intestine equally well after an oral or an intravenous dose of 1alpha-hydroxy[6-3H]vitamin D3. However, much less of both 1alpha-hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appears in bone and blood after an oral than after an intravenous dose. A much reduced bone calcium mobilization response is also noted following an oral dose as compared to an intravenous dose of 1alpha-hydroxyvitamin D3, suggesting that oral 1alpha-hydroxyvitamin D3 is not utilized as well as intravenously administered material.  相似文献   

15.
The Ca content in skeletal muscle relative to vitamin D3 intake was studied in chicks. It was found that the Ca content in rachitic chick muscle was significantly higher than normal and it decreased with vitamin D3 treatment. In 4-week-old chicks fed a vitamin D-deficient diet, the Ca content in leg muscle reached 9.86 +/- 1.07 mg/100 g wet wt, although in chicks receiving vitamin D3 in doses of 100 and 500 IU/kg diet, it was 7.80 +/- 0.72 and 6.08 +/- 0.61 mg/100 g wet wt, respectively. A single i.m. dose of 0.50 micrograms of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) or vitamin D3 caused a dramatic decrease in the muscle Ca content by 3 to 6 h after the injection. A simultaneous rise in the Ca level in blood serum was observed. However, at this time the Ca binding protein content in duodenal mucosa and the stimulation of Ca absorption were negligible. These findings allow the conclusion that the vitamin D deficiency in chicks leads to a surplus Ca accumulation in skeletal muscle. The administration of vitamin D3 or its metabolites causes rapid Ca release during the first 6 h. This may be the source of the Ca level increase in blood serum. In this respect 1,25(OH)2D3 was much more effective than vitamin D3.  相似文献   

16.
It has recently been observed that G protein-coupled receptors (GPCRs) can interact with SH3 domains through polyproline motifs. These interactions appear to be involved in receptor internalization and MAPK signalling. Here we report that the third cytoplasmic loop of the dopamine D3 receptor can interact in vitro with the adaptor protein Grb2. While the amino- and carboxy-terminal SH3 domains of Grb2 separately did not interact with the D3 receptor loop, the interaction is at least partially maintained with a Grb2 mutant for the amino-terminal SH3 domain, but disrupted for a Grb2 mutant with a nonfunctional carboxy-terminal SH3 domain. The data indicate the need of structural integrity of the entire Grb2 protein for the interaction and dominant role of the carboxy-terminal SH3 domain in the interaction. Disruption of the PXXP motifs in the D3 receptor did not affect the interaction with Grb2. These results indicate that GPCRs may contain SH3 ligands that do not contain the postulated minimal consensus sequence PXXP.  相似文献   

17.
Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers study only a few sections. To help in understanding the resulting 2D data we developed a program (TRACTS) that places such arbitrary histological sections into a high-resolution 3D model of the developing heart. The program places sections correctly, robustly and as precisely as the best of the fits achieved by five morphology experts. Dissemination of 3D data is severely hampered by the 2D medium of print publication. Many insights gained from studying the 3D object are very hard to convey using 2D images and are consequently lost or cannot be verified independently. It is possible to embed 3D objects into a pdf document, which is a format widely used for the distribution of scientific papers. Using the freeware program Adobe Reader to interact with these 3D objects is reasonably straightforward; creating such objects is not. We have developed a protocol that describes, step by step, how 3D objects can be embedded into a pdf document. Both the use of TRACTS and the inclusion of 3D objects in pdf documents can help in the interpretation of 2D and 3D data, and will thus optimize communication on morphological issues in developmental biology.  相似文献   

18.
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3.  相似文献   

19.
20.
Concomitant intravenous administration of 25-hydroxycholecalciferol and [3H] vitamin D3 to vitamin D-depleted rats did not affect the conversion of [3H] vitamin D3 to 25-OH-[3H] vitamin D3 as indicated by a serum 25-OH-[3H] vitamin D3 to content at 3 and 24 h identical to those observed in animals receiving [3H] vitamin D3 alone. Similarly, pre-dosing with 25-OH vitamin D3 24 h earlier did not affect the conversion. Co-administration to vitamin D depleted rats of vitamin D2 or D3, at 200-fold higher doses than a control group receiving tracer [3H] vitamin D3 alone, resulted in serum 25-OH vitamin D levels that were 15-20 fold higher than the control, indicating a similar metabolic fate for synthetic and natural vitamin D in rats and the ability of increased substrate to overwhelm hepatic constraints on 25-OH vitamin D production. Following intravenous administration of 25-OH-[3H] vitamin D3 to vitamin D depleted rats, hepatic 3H content decreased in parallel with serum radioactivity. Hepatic accumulation of intravenously administered vitamin D3 ([14C] vitamin D3) alone or with 25-OH-[3H] vitamin D3, by vitamin D-depleted rats revealed a marked preference for vitamin D3; the hepatic accumulation of [14C] vitamin D3 increased to 35% of the dose by 45 min, at which time 25-OH-[3H] vitamin D3 hepatic content was 7-fold less, and decreasing. Chromatography of extracts of hepatic subcellular fractions revealed more [14C] vitamin D3 than 25-OH-[3H] vitamin D3 in the microsomes, the reported site of calciferol 25-hydroxylase. Circulating 25-OH vitamin D, therefore, has comparatively minimal potential for hepatic accumulation. Product inhibition of the calciferol 25-hydroxylase must, therefore, result from recently synthesized hepatic 25-OH vitamin D, and is not affected by exogenous 25-OH vitamin D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号