首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we further characterized the 3'-5' exonuclease activity intrinsic to wild-type p53. We showed that this activity, like sequence-specific DNA binding, is mediated by the p53 core domain. Truncation of the C-terminal 30 amino acids of the p53 molecule enhanced the p53 exonuclease activity by at least 10-fold, indicating that this activity, like sequence-specific DNA binding, is negatively regulated by the C-terminal basic regulatory domain of p53. However, treatments which activated sequence-specific DNA binding of p53, like binding of the monoclonal antibody PAb421, which recognizes a C-terminal epitope on p53, or a higher phosphorylation status, strongly inhibited the p53 exonuclease activity. This suggests that at least on full-length p53, sequence-specific DNA binding and exonuclease activities are subject to different and seemingly opposing regulatory mechanisms. Following up the recent discovery in our laboratory that p53 recognizes and binds with high affinity to three-stranded DNA substrates mimicking early recombination intermediates (C. Dudenhoeffer, G. Rohaly, K. Will, W. Deppert, and L. Wiesmueller, Mol. Cell. Biol. 18:5332-5342), we asked whether such substrates might be degraded by the p53 exonuclease. Addition of Mg2+ ions to the binding assay indeed started the p53 exonuclease and promoted rapid degradation of the bound, but not of the unbound, substrate, indicating that specifically recognized targets can be subjected to exonucleolytic degradation by p53 under defined conditions.  相似文献   

2.
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.  相似文献   

3.
4.
5.
p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-μ, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-μ binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors.  相似文献   

6.
Werner syndrome (WS) is characterized by the early onset of symptoms of premature aging, cancer, and genomic instability. The molecular basis of the defects is not understood but presumably relates to the DNA helicase and exonuclease activities of the protein encoded by the WRN gene that is mutated in the disease. The attenuation of p53-mediated apoptosis in WS cells and reported physical interaction between WRN and the tumor suppressor p53 suggest that p53 and WRN functionally interact in a pathway necessary for the normal cellular response. In this study, we have demonstrated that p53 inhibits the exonuclease activity of the purified full-length recombinant WRN protein. p53 did not have an effect on a truncated amino-terminal WRN fragment that retains exonuclease activity but lacks the physical interaction domain for p53 located in the carboxyl terminus. Two naturally occurring p53 mutants found in human cancer displayed a reduced ability to inhibit WRN exonuclease activity. In cells arrested in S phase with hydroxyurea, WRN exits the nucleolus and colocalizes with p53 in the nucleoplasm. The regulation of WRN function by p53 is likely to play an important role in the maintenance of genomic integrity and prevention of cancer and other clinical symptoms associated with WS.  相似文献   

7.
Common cancer mutations of p53 tend either to lower the stability or distort the core domain of the protein or weaken its DNA binding affinity. We have previously analyzed in vitro the effects of mutations on the core domain of p53. Here, we extend those measurements to full-length p53, using either the wild-type protein or a biologically active superstable construct that is more amenable to accurate biophysical measurements to assess the possibilities of rescuing different types of mutations by anticancer drugs. The tetrameric full-length proteins had similar apparent melting temperatures to those of the individual domains, and the structural mutations lowered the melting temperature by similar amounts. The thermodynamic stability of tetrameric p53 is thus dictated by its core domain. We determined that the common contact mutation R273H weakened binding to the gadd45 recognition sequence by approximately 700-1000 times. Many mutants that have lowered melting temperatures should be good drug targets, although the common R273H mutant binds response elements too weakly for simple rescue.  相似文献   

8.
9.
The tumor suppressor p53 is frequently mutated in human cancers. Upon activation it can induce cell cycle arrest or apoptosis. ASPP2 can specifically stimulate the apoptotic function of p53 but not cell cycle arrest, but the mechanism of enhancing the activation of pro-apoptotic genes over cell cycle arrest genes remains unknown. In this study, we analyzed the binding of 53BP2 (p53-binding protein 2, the C-terminal domain of ASPP2) to p53 core domain and various mutants using biophysical techniques. We found that several p53 core domain mutations (R181E, G245S, R249S, R273H) have different effects on the binding of DNA response elements and 53BP2. Further, we investigated the existence of a ternary complex consisting of 53BP2, p53, and DNA response elements to gain insight into the specific pro-apoptotic activation of p53. We found that binding of 53BP2 and DNA to p53 is mutually exclusive in the case of GADD45, p21, Bax, and PIG3. Both pro-apoptotic and non-apoptotic response elements were competed off p53 by 53BP2 with no indication of a ternary complex.  相似文献   

10.
11.
Oncogenic mutations in the tumor suppressor protein p53 are found mainly in its DNA-binding core domain. Many of these mutants are thermodynamically unstable at body temperature. Here we show that these mutants also denature within minutes at 37 degrees C. The half-life (t(1/2)) of the unfolding of wild-type p53 core domain was 9 min. Hot spot mutants denatured more rapidly with increasing thermodynamic instability. The highly destabilized mutant I195T had a t(1/2) of less than 1 min. The wild-type p53-(94-360) construct, containing the core and tetramerization domains, was more stable, with t(1/2) = 37 min at 37 degrees C, similar to full-length p53. After unfolding, the denatured proteins aggregated, the rate increasing with higher concentrations of protein. A derivative of the p53-stabilizing peptide CDB3 significantly slowed down the unfolding rate of the p53 core domain. Drugs such as CDB3, which rescue the conformation of unstable mutants of p53, have to act during or immediately after biosynthesis. They should maintain the mutant protein in a folded conformation and prevent its aggregation, allowing it enough time to reach the nucleus and bind its sequence-specific target DNA or the p53 binding proteins that will stabilize it.  相似文献   

12.
13.
14.
15.
p53 is a conformationally flexible sequence-specific DNA binding protein mutated in many human tumors. To understand why the mutant p53 proteins associated with human tumors fail to bind DNA, we mapped the DNA binding domain of wild-type p53 and examined its regulation by changes in the protein conformation. Using site-directed mutagenesis, residues 90-286 of mouse p53 were shown to form the sequence-specific DNA binding domain. Two highly conserved regions within this domain, regions IV and V, were implicated in contacting DNA. Wild-type p53 bound DNA as a tetramer, each subunit recognizing five nucleotides of the 20 nucleotide-long DNA site. Conformational shifts of the oligomerization domain propagated to the tetrameric DNA binding domain, regulating DNA binding activity, but did not affect the subunit stoichiometry of wild-type p53 oligomers. Interestingly, conformational shifts could also be propagated within certain p53 mutants, rescuing DNA binding. One of these mutants was the mouse equivalent of human histidine 273, which is frequently associated with human tumors.  相似文献   

16.
Johnsson N 《FEBS letters》2002,531(2):259-264
Many mutations in the human tumor suppressor p53 affect the function of the protein by destabilizing the structure of its DNA binding domain. To monitor the effects of those mutations in vivo the stability of the DNA binding domain of p53 and some of its mutants was investigated with the split-ubiquitin (split-Ub) method. The split-Ub-derived in vivo data on the relative stability of the mutants roughly correlate with the quantitative data from in vitro denaturation experiments as reported in the literature. A variation of this assay allows visualizing the difference in stability between the wild-type p53 core and the mutant p53(V143A) by a simple growth assay.  相似文献   

17.
Mutations that affect the oligomerization domain (OD) of the p53 tumor suppressor may be of particular interest because of the remarkable contradiction between the conservation of the OD and its relative functional resistance to amino acid substitutions, and because of recent hints that cellular protein factors may interact with the OD. Both point to the possibility that this domain fulfills tasks beyond oligomerization. We report that the tumor-associated mutants 330H, 334V, and 337C are defective for homo-oligomerization by three criteria. Accordingly, 330H and 337C failed to bind to a p53 recognition motif in gel-shift assays and to stimulate reporter genes efficiently in transient transfections. 334V retained some activity in both assays despite being oligomerization-defective. The ability of the mutants to induce apoptosis correlated with their performance in the DNA binding and transactivation assays. However, mutants 330H and 337C were able to provoke cell death when overexpressed, which in combination with their failure to transactivate genes suggests competence for the induction of transactivation-independent apoptosis at high protein levels. Although 334V and 337C failed to homo-oligomerize, they were able to hetero-oligomerize with a p53 with wild-type OD, and 334V was able to interfere with transactivation by wt p53. All mutants showed a reduced reactivity with antibody PAb421 and a distinct calpain cleavage pattern indicative of conformational alterations. In conclusion, tumor-associated OD mutants of p53 can be functionally competent to different degrees despite of being oligomerization defective.  相似文献   

18.
A major impediment to successful chemotherapy is the propensity for some tumor cells to undergo cell cycle arrest rather than apoptosis. It is well established, however, that the adenovirus E1A protein can sensitize these cells to the induction of apoptosis by anticancer agents. To further understand how E1A enhances chemosensitivity, we have made use of a human colon carcinoma cell line (HCT116) which typically undergoes cell cycle arrest in response to chemotherapeutic drugs. As seen by the analysis of E1A mutants, we show here that E1A can induce apoptosis in these cells by neutralizing the activities of the cyclin-dependent kinase inhibitor p21. E1A's ability to interact with p21 and thereby restore Cdk2 activity in DNA-damaged cells correlates with the reversal of G(1) arrest, which in turn leads to apoptosis. Analysis of E1A mutants failing to bind p300 (also called CBP) or Rb shows that they are almost identical to wild-type E1A in their ability to initially overcome a G(1) arrest in cells after DNA damage, while an E1A mutant failing to bind p21 is not. However, over time, this mutant, which can still target Rb, is far more efficient in accumulating cells with a DNA content greater than 4N but is similar to wild-type E1A and the other E1A mutants in releasing cells from a p53-mediated G(2) block following chemotherapeutic treatment. Thus, we suggest that although E1A requires the binding of p21 to create an optimum environment for apoptosis to occur in DNA-damaged cells, E1A's involvement in other pathways may be contributing to this process as well. A model is proposed to explain the implications of these findings.  相似文献   

19.
The p53-related p63 gene encodes six isoforms with differing N and C termini. TAp63 isoforms possess a transactivation domain at the N terminus and are able to transactivate a set of genes, including some targets downstream of p53. Accumulating evidence indicates that TAp63 plays an important role in regulation of cell proliferation, differentiation, and apoptosis, whereas transactivation-inert deltaNp63 functions to inhibit p63 and other p53 family members. Mutations in the p63 gene that abolish p63 DNA-binding and transactivation activities cause human diseases, including ectrodactyly ectodermal dysplasia and facial clefting (EEC) syndrome. In this study, we show that mutant p63 proteins with a single amino acid substitution found in EEC syndrome are DNA binding deficient, transactivation inert, and highly stable. We demonstrate that TAp63 protein expression is tightly controlled by its specific DNA-binding and transactivation activities and that p63 is degraded in a proteasome-dependent, MDM2-independent pathway. In addition, the N-terminal transactivation domain of p63 is indispensable for its protein degradation. Furthermore, the wild-type TAp63gamma can act in trans to promote degradation of mutant TAp63gamma defective in DNA binding, and the TA domain deletion mutant of TAp63gamma inhibits transactivation activity and stabilizes the wild-type TAp63 protein. Taken together, these data suggest a feedback loop for p63 regulation, analogous to the p53-MDM2 feedback loop.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号