首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium (Ca2+)-activated chloride (Cl) channels (CaCCs) play a role in the modulation of action potentials and synaptic responses in the somatodendritic regions of central neurons. In the vertebrate retina, large Ca2+-activated Cl currents (ICl(Ca)) regulate synaptic transmission at photoreceptor terminals; however, the molecular identity of CaCCs that mediate ICl(Ca) remains unclear. The transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), has been recently validated as a CaCC and is widely expressed in various secretory epithelia and nervous tissues. Despite the fact that tmem16a was first cloned in the retina, there is little information on its cellular localization and function in the mammalian retina. In this study, we found that ANO1 was abundantly expressed as puncta in 2 synaptic layers. More specifically, ANO1 immunoreactivity was observed in the presynaptic terminals of various retinal neurons, including photoreceptors. ICl(Ca) was first detected in dissociated rod bipolar cells expressing ANO1. ICl(Ca) was abolished by treatment with the Ca2+ channel blocker Co2+, the L-type Ca2+ channel blocker nifedipine, and the Cl channel blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and niflumic acid (NFA). More specifically, a recently discovered ANO1-selective inhibitor, T16Ainh-A01, and a neutralizing antibody against ANO1 inhibited ICl(Ca) in rod bipolar cells. Under a current-clamping mode, the suppression of ICl(Ca) by using NPPB and T16Ainh-A01 caused a prolonged Ca2+ spike-like depolarization evoked by current injection in dissociated rod bipolar cells. These results suggest that ANO1 confers ICl(Ca) in retinal neurons and acts as an intrinsic regulator of the presynaptic membrane potential during synaptic transmission.  相似文献   

2.
This review examines the function of calcium-activated chloride currents (I(Cl(Ca))) in the retina with an emphasis on their physiological role in photoreceptors. Although found in a variety of neurons and glial cells of the retina, I(Cl(Ca)) has been most prominently studied in cones, where it activates in response to depolarization-evoked Ca(2+) influx. The slow and complex gating kinetics of the chloride current have been considered to reflect the changing submembrane concentration of intracellular calcium. It is likely that the role of I(Cl(Ca)) is to stabilize the membrane potential of cones during synaptic activity and presynaptic Ca channel modulation. Several candidates in the molecular identification of the channel have been put forward but the issue remains unresolved.  相似文献   

3.
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A2 (PLA2) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca2+-activated chloride current (ICl(Ca)) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited ICl(Ca) in a concentration-dependent manner (IC50 = 4.2 μM, nHill = 1.1), without affecting the L-type Ca2+ current. Unlike ACA, the non-selective PLA2 inhibitor bromophenacyl bromide (BPB; 50 μM) had no effect on ICl(Ca). In addition, the analgesic NSAID structurally-related to ACA, diclofenac (50 μM) also had no effect on ICl(Ca), whereas the current in the same cells could be suppressed by chloride channel blockers flufenamic acid (FFA; 100 μM) or 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS;100 μM). Besides ICl(Ca), ACA (50 μM) also suppressed the cAMP-activated chloride current, but to a lesser extent. It is proposed that the inhibitory effects of ACA on ICl(Ca) are PLA2-independent and that the drug may serve as a useful tool in understanding the nature and function of cardiac anion channels.  相似文献   

4.
Extracellular acidic pH-activated chloride channel ICl, acid, has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize ICl,acid in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for ICl,acid revealed that EC50 is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl channel inhibitor DIDS (100 μM). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, ICl,acid would play a role in regulation of EC function under these pathological conditions.  相似文献   

5.
The presence of Ca2+-activated Cl currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.  相似文献   

6.
The presence of Ca2+-activated Cl currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.  相似文献   

7.
Severe acidic pH-activated chloride channel (ICl,acid) has been found in various mammalian cells. In the present study, we investigate whether this channel participates in reactions of the thoracic aorta to severe acidosis and whether it plays a role in hypertension. We measured isometric contraction in thoracic aorta rings from spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. Severe acidosis induced contractions of both endothelium-intact and -denuded thoracic aorta rings. In Wistar rats, contractions did not differ at pH 6.4, 5.4 and 4.4. However, in SHRs, contractions were higher at pH 5.4 or 4.4 than pH 6.4, with no difference between contractions at pH 5.4 and 4.4. Nifedipine, ICl,acid blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and 4,4′-diisothiocyanatostilbene-2, 2′-disulfonic acid (DIDS) inhibited severe acidosis-induced contraction of aortas at different pH levels. When blocking ICl,acid, the remnant contraction was greater at pH 4.4 than pH 5.4 and 6.4 for both SHRs and Wistar rats. With nifedipine, the remnant contraction was greatly reduced at pH 4.4 as compared with at pH 6.4 and 5.4. With NPPB or DIDS, the ratio of remnant contractions at pH 4.4 and 5.4 (R4.4/5.4) was lower for SHRs than Wistar rats (all <1). However, with nifedipine, the R4.4/5.4 was higher for SHRs than Wistar rats (both >1). Furthermore, patch clamp recordings of ICl,acid and intracellular Ca2+ measurements in smooth muscle cells confirmed these findings. ICl,acid may protect arteries against excess vasoconstriction under extremely acidic extracellular conditions. This protective effect may be decreased in hypertension.  相似文献   

8.
The role in the heart of the cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR), which underlies a protein kinase A-dependent Cl current (ICl.PKA) in cardiomyocytes, remains unclear. The identification of a CFTR-selective inhibitor would provide an important tool for the investigation of the contribution of CFTR to cardiac electrophysiology. GlyH-101 is a glycine hydrazide that has recently been shown to block CFTR channels but its effects on cardiomyocytes are unknown. Here the action of GlyH-101 on cardiac ICl.PKA and on other ion currents has been established. Whole-cell patch-clamp recordings were made from rabbit isolated ventricular myocytes. GlyH-101 blocked ICl.PKA in a concentration- and voltage-dependent fashion (IC50 at +100 mV = 0.3 ± 1.5 μM and at −100 mV = 5.1 ± 1.3 μM). Woodhull analysis suggested that GlyH-101 blocks the open pore of cardiac CFTR channels at an electrical distance of 0.15 ± 0.03 from the external membrane surface. A concentration of GlyH-101 maximally effective against ICl.PKA (30 μM) was tested on other cardiac ion currents. Inward current at −120 mV, comprised predominantly of the inward-rectifier background K+ current, IK1, was reduced by ∼43% (n = 5). Under selective recording conditions, the Na+ current (INa) was markedly inhibited by GlyH-101 over the entire voltage range (with a fractional block at −40 mV of ∼82%; n = 8). GlyH-101 also produced a voltage-dependent inhibition of L-type Ca2+ channel current (ICa,L); fractional block at +10 mV of ∼49% and of ∼28% at −10 mV; n = 11, with a ∼−3 mV shift in the voltage-dependence of ICa,L activation. Thus, this study demonstrates for the first time that GlyH-101 blocks cardiac ICl.PKA channels in a similar fashion to that reported for recombinant CFTR. However, inhibition of other cardiac conductances may limit its use as a CFTR-selective blocker in the heart.  相似文献   

9.
Ventricular arrhythmias, a leading cause of sudden cardiac death, can be triggered by cardiomyocyte early afterdepolarizations (EADs). EADs can result from an abnormal late activation of L-type Ca2+ channels (LTCCs). Current LTCC blockers (class IV antiarrhythmics), while effective at suppressing EADs, block both early and late components of ICa,L, compromising inotropy. However, computational studies have recently demonstrated that selective reduction of late ICa,L (Ca2+ influx during late phases of the action potential) is sufficient to potently suppress EADs, suggesting that effective antiarrhythmic action can be achieved without blocking the early peak ICa,L, which is essential for proper excitation–contraction coupling. We tested this new strategy using a purine analogue, roscovitine, which reduces late ICa,L with minimal effect on peak current. Scaling our investigation from a human CaV1.2 channel clone to rabbit ventricular myocytes and rat and rabbit perfused hearts, we demonstrate that (1) roscovitine selectively reduces ICa,L noninactivating component in a human CaV1.2 channel clone and in ventricular myocytes native current, (2) the pharmacological reduction of late ICa,L suppresses EADs and EATs (early after Ca2+ transients) induced by oxidative stress and hypokalemia in isolated myocytes, largely preserving cell shortening and normal Ca2+ transient, and (3) late ICa,L reduction prevents/suppresses ventricular tachycardia/fibrillation in ex vivo rabbit and rat hearts subjected to hypokalemia and/or oxidative stress. These results support the value of an antiarrhythmic strategy based on the selective reduction of late ICa,L to suppress EAD-mediated arrhythmias. Antiarrhythmic therapies based on this idea would modify the gating properties of CaV1.2 channels rather than blocking their pore, largely preserving contractility.  相似文献   

10.
To elucidate the regional differences in sinoatrial node pacemaking mechanisms, we investigated 1), bifurcation structures during current blocks or hyperpolarization of the central and peripheral cells, 2), ionic bases of regional differences in bifurcation structures, and 3), the role of Na+ channel current (INa) in peripheral cell pacemaking. Bifurcation analyses were performed for mathematical models of the rabbit sinoatrial node central and peripheral cells; equilibrium points, periodic orbits, and their stability were determined as functions of parameters. Structural stability against applications of acetylcholine or electrotonic modulations of the atrium was also evaluated. Blocking L-type Ca2+ channel current (ICa,L) stabilized equilibrium points and abolished pacemaking in both the center and periphery. Critical acetylcholine concentration and gap junction conductance for pacemaker cessation were higher in the periphery than in the center, being dramatically reduced by blocking INa. Under hyperpolarized conditions, blocking INa, but not eliminating ICa,L, abolished peripheral cell pacemaking. These results suggest that 1), ICa,L is responsible for basal pacemaking in both the central and peripheral cells, 2), the peripheral cell is more robust in withstanding hyperpolarizing loads than the central cell, 3), INa improves the structural stability to hyperpolarizing loads, and 4), INa-dependent pacemaking is possible in hyperpolarized peripheral cells.  相似文献   

11.
The swelling-activated chloride current (I Cl,Vol) is abundantly expressed in glioblastoma (GBM) cells, where it controls cell volume and invasive migration. The transduction pathway mediating I Cl,Vol activation in GBM cells is, however, poorly understood. By means of pharmacological and electrophysiological approaches, on GL-15 human GBM cells we found that I Cl,Vol activation by hypotonic swelling required the activity of a U73122-sensitive phospholipase C (PLC). I Cl,Vol activation could also be induced by the membrane-permeable diacylglycerol (DAG) analog OAG. In contrast, neither calcium (Ca2+) chelation by BAPTA-AM nor changes in PKC activity were able to affect I Cl,Vol activation by hypotonic swelling. We further found that R59022, an inhibitor of diacylglycerol kinase (DGK), reverted I Cl,Vol activation, suggesting the involvement of phosphatidic acid. In addition, I Cl,Vol activation required the activity of a EHT1864-sensitive Rac1 small GTPase and the resulting actin polymerization, as I Cl,Vol activation was prevented by cytochalasin B. We finally show that I Cl,Vol can be activated by the promigratory fetal calf serum in a PLC- and DGK-dependent manner. This observation is potentially relevant because blood serum can likely come in contact with glioblastoma cells in vivo as a result of the tumor-related partial breakdown of the blood–brain barrier. Given the relevance of I Cl,Vol in GBM cell volume regulation and invasiveness, the several key signaling molecules found in this study to be involved in the activation of the I Cl,Vol may represent potential therapeutic targets against this lethal cancer.  相似文献   

12.
13.
Summary Smooth muscle cells normally do not possess fast Na2+ channels, but inward current is carried through two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Using whole-cell voltage clamp of single smooth muscle cells isolated from the longitudinal layer of 18-day pregnant rat uterus, depolarizing pusles, applied from a holding potential of –90 mV, evoked two types of inward current, fast and slow [8]. The fast inward current decayed within 30 ms, depended on [Na]0, and was inhibited by TTX (K0.5 = 27 nM). The slow inward current decayed slowly, was dependent on [Ca]0, and was inhibited by nifedipine. These results suggest that the fast inward current is a fast Na2+ channel current, and that the slow inward current is a Ca2+ channel current was not evident. Thus, the ion channels which generate inward currents in pregnant rat uterine cells are TTX-sensitive fast Na+ channels and dihudropuridine-sensitive slow Ca2+ channels. The number of fast Na+ channels increased during gestation [9]. The averaged current density increased from 0 on day 5, to 0.19 on day 9, to 0.56 on day 14, to 0.90 on day 18, and to 0.86 pA/pF on day 21. This almost linear increase occurs because of an increase in the fraction of cells which possess fast Na2+ channels, and it suggested that the fast Na+ current may be involved in spread of excitation. The Ca2+ channel current density also was higher during the latter half of gestation. These results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and may facilitate parturition. Isoproterenol (beta-agonist) did not affect either ICa(s) or INa(f), whereas Mg2+ (K0.5 of 12 mM) and nifedipine (K0.5 of 3.3 nM) depressed ICa(s). Oxytocin had no effect on INa(f) and actually depressed ICa(s) to a small extect. Therefore, the tocolytic action of beta-agonists cannot be explained by an inhibition of ICa(s), whereas that of Mg2+ can be so explained. The stimulating action of oxytocin on uterine contractions is not due to stimulation of ICa(s).  相似文献   

14.
Dynamics of calcium regulation of chloride currents in Xenopus oocytes   总被引:1,自引:0,他引:1  
Ca-activated Cl currents are widely expressed in many cell typesand play diverse and important physiological roles. TheXenopus oocyte is a good model systemfor studying the regulation of these currents. We previously showedthat inositol 1,4,5-trisphosphate (IP3) injection intoXenopus oocytes rapidly elicits anoninactivating outward Cl current(ICl1-S)followed several minutes later by the development of slow inward(ICl2) andtransient outward(ICl1-T) Clcurrents. In this paper, we investigate whether these three currentsare mediated by the same or different Cl channels. Outward Cl currentswere more sensitive to Ca than inward Cl currents, as shown byinjection of different amounts of Ca or by Ca influx through aheterologously expressed ligand-gated Ca channel, the ionotropicglutamate receptor iGluR3. These data could be explained by twochannels with different Ca affinities or one channel with a higher Caaffinity at depolarized potentials. To distinguish between thesepossibilities, we determined the anion selectivity of the threecurrents. The anion selectivity sequences for the three currents werethe same (I > Br > Cl), butICl1-Shad an I-to-Cl permeability ratio more than twofold smaller than the other two currents. The different anion selectivities and instantaneous current-voltage relationships were consistent with at least two different channels mediating these currents. However, afterconsideration of possible errors, the hypothesis that a single type ofCl channel underlies the complex waveforms of the three differentmacroscopic Ca-activated Cl currents inXenopus oocytes remains a viable alternative.

  相似文献   

15.
X-ray microanalysis was applied to investigate ion transport mediated by P2Upurinoceptors and α2A adrenoceptors as well as their interaction in the regulation of the intracellular elemental concentration in HT29 cells. In response to ATP, HT29 cells showed a decrease of intracellular Cl, Na and an increase in Ca. A similar result was observed with UTP, but UTP appeared to be more potent than ATP. On the other hand, UK14,304, an α2receptor agonist, was found to be capable of reversing the action of both UTP and ATP on ion secretion, and caused a clear increase in intracellular Na and Cl. Moreover, treatment of cells with UK14,304 before exposure to UTP did not induce a decrease in Cl and Na, suggesting that UK14,304 blocks the action of UTP. The secretory effect of UTP was also blocked by NPPB, a chloride channel blocker, and alloxan. Chelation of extracellular Ca with EGTA abolished ion response to UTP. These results suggest that since inhibition of the intracellular cAMP system and chelation of Ca2+can block the nucleotide-induced chloride secretion, the ATP and UTP-induced chloride secretion can be mediated via both cAMP-dependent and Ca2+-dependent pathways.  相似文献   

16.
Tamoxifen is a triphenylethylene non‐steroidal antiestrogen anticancer agent. It also shows inhibitory effects on metastasis of estrogen receptor (EsR)‐independent tumors, but the underlying mechanism is unclear. It was demonstrated in this study that, in EsR‐negative and highly metastatic human hepatocellular carcinoma MHCC97H cells, tamoxifen‐inhibited cell migration, volume‐activated Cl? currents (ICl,vol) and regulatory volume decrease (RVD) in a concentration‐dependent manner with a similar IC50. Analysis of the relationships between migration, ICl,vol and RVD showed that cell migration was positively correlated with ICl,vol and RVD. Knockdown of the expression of ClC‐3 Cl? channel proteins by ClC‐3 shRNA or siRNA inhibited ICl,vol, and cell migration, and these inhibitory effects could not be increased further by addition of tamoxifen in the medium. The results suggest that knockdown of ClC‐3 expression may deplete the effects of tamoxifen; tamoxifen may inhibit cell migration by modulating ICl,vol and cell volume. Moreover, tamoxifen decreased the activity of protein kinase C (PKC) and the effects were reversed by the PKC activator PMA. Activation of PKC by PMA could competitively downregulate the inhibitory effects of tamoxifen on ICl,vol. PMA promoted cell migration, and knockdown of ClC‐3 expression by ClC‐3 siRNA abolished the PMA effect on cell migration. The results suggest that tamoxifen may inhibit ICl,vol by suppressing PKC activation; ICl,vol may be an EsR‐independent target for tamoxifen in the anti‐metastatic action on cancers, especially on EsR‐negative cancers. The finding may have an implication in the clinical use of tamoxifen in the treatments of both EsR‐positive and EsR‐negative cancers. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The slow Ca2+ channels (L-type) of the heart are stimulated by cAMP. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a Ca2+ channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate ICa, Ca2+ influx, and contraction. The action of cAMP is mediated by PK-A and phosphorylation of the slow Ca2+ channel protein or an associated regulatory protein (stimulatory type). The myocardial slow Ca2+ channels are also rogulated by cGMP, in a manner that is opposite orantagonistic to that of cAMP. We have demonstrated this at both the macroscople level (whole-cell voltage clamp) and the single-channel level. The effect of cGMP is mediated by PK-G and phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the Ca2+ channel. Introduction of PK-G intracellularly causes a relatively rapid inhibition of ICa(L) in both chick and rat heart cells. Such inhibition occurs for both the basal and stimulated ICa(L). In addition, the cGMP/PK-G system was reported to stimulate a phosphatase that dephosphorylates the Ca2+ channel. In addition to the slower indirect pathway—exerted via cAMP/PK-A—there is a faster more-direct pathway for ICa(L) stimulation by the -adrenergic receptor. This latter pathway involves direct modulation of the channel activity by the alpha subunit (s*) of the Gs-protein. In vascular smooth muscle cells the two pathways (direct and indirect) also appear to be present, although the indirect pathway producesinhibition of ICa(L). PK-C and calmodulin-PK also may play roles in regulation of the myocardial slow Ca2+ channels. Both of these protein kinases stimulate the activity of these channels. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of factors intrinsic and extrinsic to the cell, and thereby control can be exercised over the force of contraction of the heart.This review-type article was prepared by modifying an article published in a book by Sperelakiset al., 1994.  相似文献   

18.
Summary Na and Cl fluxes and short-circuit current (I sc) in rabbit ileum have been studied as a function of ionic concentrations in HCO3-free solutions. Both net Na flux (J net Na ) andI sc show similar saturation functions of [Na] at fixed [Cl]. They show no significant difference between zero and 112mm Na but at 140mm NaI sc is significantly greater than theJ net Na . Net Cl transport, secretion, is observed only at 140mm Na and is approximately equivalent to the difference between theI sc andJ net Na . The transcellular mucosa-to-serosa Na fluxes measured at 140 and 70mm Na do not differ significantly from the correspondingI sc. The net Cl flux varies with [Cl] at fixed [Na] whileI sc is virtually not affected by [Cl]. These results suggest that the absorptive Na transport process is electrogenic and responsible for theI sc and that the secretory fluxes of Na and Cl are coupled, require high [Na], vary with [Cl], and do not contribute toI sc. K-free solution abolishes theI sc after a prolonged lag. Finally, the effect of a low resistance shunt pathway on active Na absorption is examined with a four-compartment model.Deceased (October 16, 1974).  相似文献   

19.
A Ca2+-activated (I Cl,Ca) and a swelling-activated anion current (I Cl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+] i ), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl concentration. I Cl,Ca current density increased with increasing [Ca2+] i , and this current was abolished by lowering [Ca2+] i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA). In contrast, activation of I Cl,vol did not require an increase in [Ca2+] i . The kinetics of I Cl,Ca and I Cl,vol were different: at depolarized potentials, I Cl,Ca as activated in a [Ca2+] i - and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, I Cl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of I Cl,vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I > Cl > gluconate. I Cl,Ca was inhibited by niflumic acid (100 μm), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 μm) and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS, 100 μm), niflumic acid being the most potent inhibitor. In contrast, I Cl,vol was unaffected by niflumic acid (100 μm), but abolished by tamoxifen (10 μm). Thus, in Ehrlich cells, separate chloride currents, I Cl,Ca and I Cl,vol, are activated by an increase in [Ca2+] i and by cell swelling, respectively. Received: 12 November 1997/Revised: 5 February 1998  相似文献   

20.
Platelet-activating factor (PAF) has been implicated as one of the mediators of cardiac anaphylaxis. This phospholipid has been shown to have numerous effects on a variety of tissues, including the heart. Among these effects are alterations in the resting potential and generation of arrhythmias at very low concentrations. This suggests that PAF may modulate the activity of the background, inwardly-rectifying potassium current (IK1). Thus, the effects of PAF on IK1 were examined at the single channel level. Ventricular cells were isolated from adult guinea pig hearts and single channel currents recorded from cell-attached patches. PAF had substantial effects on the single channel currents at sub-nanomolar concentrations (10–11 to 10–10 M). PAF initially caused flickering of the channels, followed by a gradual prolonged depression of channel activity. Since these potassium channels play a major role in determining the resting potential and excitability of the cardiac cell, the effects of PAF on IK1 may play a major role in the deleterious electrophysiological actions of PAF on the heart.Abbreviations IK1 Inwardly-rectifying background potassium current - Lyso-PAF Lyso-platelet-activating factor - PAF Platelet-activating factor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号