首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recent studies have revealed heterogeneity in the structure of eukaryotic cytoplasmic ribosomes, including a difference in protein composition. It has been proposed that this heterogeneity, or the specialized ribosome, contributes to tissue development and homeostasis through selective mRNA translation, although this remains largely unclear. Our previous proteomic survey of rodent ribosomes found the testis-specific ribosomal proteins L10-like and L39-like, which are paralogues of the X-linked ribosomal proteins L10 and L39, respectively. We have hypothesized that the rodent testis provides a good model for examining the possible functional importance of ribosome heterogeneity. In the present study, a new paralogue of X-linked ribosomal protein S4 has been identified in the mouse testis. The gene encoding this paralogue was autosomal, intronless and expressed predominantly in the testis. It appeared that this paralogue was included in polysomes as a component of the ribosome. Although these properties were similar to those of the ribosomal proteins L10-like and L39-like, this S4 paralogue and L10-like showed partially different expression patterns in spermatogenic cells. These findings are discussed in relation to the unique evolution of genes encoding a paralogue of ribosomal protein S4 in mammals and to the significance of testis-specific paralogues of ribosomal proteins in active ribosomes during spermatogenesis.  相似文献   

4.
Although nuclear ribosomal DNA (rDNA) repeats evolve together through concerted evolution, some genomes contain a considerable diversity of paralogous rDNA. This diversity includes not only multiple functional loci but also putative pseudogenes and recombinants. We examined the occurrence of divergent paralogues and recombinants in Gossypium, Nicotiana, Tripsacum, Winteraceae, and Zea ribosomal internal transcribed spacer (ITS) sequences. Some of the divergent paralogues are probably rDNA pseudogenes, since they have low predicted secondary structure stability, high substitution rates, and many deamination-driven substitutions at methylation sites. Under standard PCR conditions, the low stability paralogues amplified well, while many high-stability paralogues amplified poorly. Under highly denaturing PCR conditions (i.e., with dimethylsulfoxide), both low- and high-stability paralogues amplified well. We also found recombination between divergent paralogues. For phylogenetics, divergent ribosomal paralogues can aid in reconstructing ancestral states and thus serve as good outgroups. Divergent paralogues can also provide companion rDNA phylogenies. However, phylogeneticists must discriminate among families of divergent paralogues and recombinants or suffer from muddled and inaccurate organismal phylogenies.  相似文献   

5.
Galat A 《Proteins》2004,56(4):808-820
The 18 kDa archetypal cyclosporin-A binding protein, cyclophilin-A, has multiple paralogues in the human genome. Only 18 of those paralogues have been detected as mRNAs or proteins whose masses vary from 18 to 354 kDa, whereas the functional significance of the open reading frames (ORFs) encoding other paralogues of cyclophilin-A remains unknown. The genomes of Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Schizosaccharomyces pombe, and Saccharomyces cerevisiae encode different numbers of the cyclophilin paralogues, some of which are orthologous to the human cyclophilins. A library of novel algorithms was developed and used for computation of the conservation levels for hydrophobicity and bulkiness profiles, and amino acid compositions (AACs) of 303 aligned sequences of cyclophilins. The majority of the paralogues and orthologues encoded in these 6 genomes differ considerably from each other. Some of the orthologues and paralogues have high correlation coefficients (CCFs) for pairwise compared hydrophobicity and bulkiness profiles, and whose AACs differ to a low degree. Convergence of these three properties of the polypeptide chain and apparent conservation of the typical sequence hallmarks and parameters allowed for the clustering of the functionally related orthologues and paralogues of the cyclophilins. The clustering method allowed for sorting out the cyclophilins into several distinct classes. Analyses of the overlapping clusters of sequences permitted delineation of some hypothetical pathways that might have led to the creation of certain paralogues of cyclophilins in the eukaryotic genomes.  相似文献   

6.
In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease that processes pro-LC3 paralogues, inhibits autophagic degradation and lipidation of LC3 paralogues. Inhibition was caused by sequestration of free LC3 paralogues in stable complexes with the Atg4B mutant. In mutant overexpressing cells, Atg5- and ULK1-positive intermediate autophagic structures accumulated. The length of these membrane structures was comparable to that in control cells; however, a significant number were not closed. These results show that the lipidation of LC3 paralogues is involved in the completion of autophagosome formation in mammalian cells. This study also provides a powerful tool for a wide variety of studies of autophagy in the future.  相似文献   

7.
In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome‐wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.  相似文献   

8.
Intuitively, paralogues created by gene duplication should retain related functions. However, a study of the two lactose metabolic operons of Streptococcus pyogenes, reported in this issue of Molecular Microbiology, indicates that paralogues might evolve very different functions, in this case changing from a metabolic enzyme to a regulator of virulence. Divergence of paralogues could be a newly recognized theme in the metamorphosis of a bacteria from innocuous to pathogenic.  相似文献   

9.
10.
There are three mammalian SUMO paralogues: SUMO-1 is approximately 45% identical to SUMO-2 and SUMO-3, which are 96% identical to each other. It is currently unclear whether SUMO-1, -2, and -3 function in ways that are unique, redundant, or antagonistic. To address this question, we examined the dynamics of individual SUMO paralogues by using cell lines that stably express each of the mammalian SUMO proteins fused to the yellow fluorescent protein (YFP). Whereas SUMO-2 and -3 showed very similar distributions throughout the nucleoplasm, SUMO-1 was uniquely distributed to the nuclear envelope and to the nucleolus. Photobleaching experiments revealed that SUMO-1 dynamics was much slower than SUMO-2 and -3 dynamics. Additionally, the mobility of SUMO paralogues differed between subnuclear structures. Finally, the timing and distributions were dissimilar between paralogues as cells exited from mitosis. SUMO-1 was recruited to nuclear membrane as nuclear envelopes reformed in late anaphase, and accumulated rapidly into the nucleus. SUMO-2 and SUMO-3 localized to chromosome earlier and accumulated gradually during telophase. Together, these findings demonstrate that mammalian SUMO-1 shows patterns of utilization that are clearly discrete from the patterns of SUMO-2 and -3 throughout the cell cycle, arguing that it is functionally distinct and specifically regulated in vivo.  相似文献   

11.
12.
We analysed ketoacyl synthase domains of type I polyketide synthase (PKS) gene fragments of 163 lichenized and 51 non-lichenized fungi in a Bayesian phylogenetic framework. Lichenized taxa from several unrelated taxonomic groups, some of which produce identical secondary metabolites, were included. We found 12 clades of non-reducing PKS genes, which represent monophyletic PKS paralogues. PAML and SELECTON analyses indicated that purifying selection is the prevailing selective force in the evolution of the keto synthase domain of these paralogues. We detected no unambiguous correlation between PKS clades and the distribution of lichen substances. Together with the strong evidence for purifying selection, the wide distribution of certain paralogues in ascomycetes suggested early gene duplication events in the evolutionary history of this gene family in the Ascomycota.  相似文献   

13.
Gene duplication is regarded as an important evolutionary mechanism creating genetic and phenotypic novelty. At the same time, the evolutionary mechanisms following gene duplication have been a subject of much debate. Here we analyze the sequence evolution of zonadhesin, a mammalian sperm ligand that binds to the oocyte zona pellucida in a species-specific manner. In pig, rabbit, and primates, precursor zonadhesin comprises, among others, one partial and four complete tandem repetitive D domains. The mouse precursor is distinguished by 20 additional partial D3 domains consisting of 120 amino acids each. This gene structure allows sequence comparison in both paralogues and orthologues. Detailed sequence analysis reveals that D domains evolve faster across paralogues than orthologues. Moreover, at the codon level, partial D3 paralogues of mouse show evidence of positive selection, whereas the corresponding orthologues do not. Individual posttranslational motif patterns and positive selection point to neofunctionalization of partial D3 paralogues of mouse, rather than subfunctionalization. However, as we found additional evidence for homogenization by partial gene conversion, sequence evolution of partial D3 paralogues of mouse might be better described as a combination of divergent and convergent evolution. So far, the divergence at the codon level has outbalanced the convergence at the level of smaller fragments. The probable driving force behind the evolutionary patterns observed is sexual selection. We finally discuss whether the functional determination influences the evolutionary regime acting on sperm ligands and egg receptors, respectively. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

14.
The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1–3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.  相似文献   

15.
16.
Recombination between paralogues at the Rp1 rust resistance locus in maize   总被引:7,自引:0,他引:7  
Rp1 is a complex rust resistance locus of maize. The HRp1-D haplotype is composed of Rp1-D and eight paralogues, seven of which also code for predicted nucleotide binding site-leucine rich repeat (NBS-LRR) proteins similar to the Rp1-D gene. The paralogues are polymorphic (DNA identities 91-97%), especially in the C-terminal LRR domain. The remaining family member encodes a truncated protein that has no LRR domain. Seven of the nine family members, including the truncated gene, are transcribed. Sequence comparisons between paralogues provide evidence for past recombination events between paralogues and diversifying selection, particularly in the C-terminal half of the LRR domain. Variants selected for complete or partial loss of Rp1-D resistance can be explained by unequal crossing over that occurred mostly within coding regions. The Rp1-D gene is altered or lost in all variants, the recombination breakpoints occur throughout the genes, and most recombinant events (9/14 examined) involved the same untranscribed paralogue with the Rp1-D gene. One recombinant with a complete LRR from Rp1-D, but the amino-terminal portion from another homologue, conferred the Rp1-D specificity but with a reduced level of resistance.  相似文献   

17.
Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue.  相似文献   

18.
GT Powell  GJ Wright 《PloS one》2012,7(7):e40810
The mammalian JAM family is composed of three cell surface receptors. Interactions between the proteins have well-characterised roles in inflammation and tight junction formation, but little is known about their function in early development. Recently, we identified a role for jamb and jamc in zebrafish myocyte fusion. Genome duplication in the teleost lineage raised the possibility that additional JAM family paralogues may also function in muscle development. To address this, we searched the zebrafish genome to identify potential paralogues and confirmed their homology, bringing the total number of zebrafish jam family members to six. We then compared the physical binding properties of each paralogue by surface plasmon resonance and determined the gene expression patterns of all zebrafish jam genes at different stages of development. Our results suggest a significant sub-functionalisation of JAM-B and JAM-C orthologues with respect to binding strength (but not specificity) and gene expression. The paralogous genes, jamb2 and jamc2, were not detected in the somites or myotome of wild-type embryos. We conclude that it is unlikely that the paralogues have a function in primary myogenesis.  相似文献   

19.
The genomic structure of the filamin gene paralogues FLNB and FLNC was determined and related to FLNA. FLNB consists of 45 exons and 44 introns and spans approximately 80 kb of genomic DNA. FLNC is divided into 48 exons and 47 introns and covers approximately 29.5 kb of genomic DNA. A previously unknown intron was found in FLNA. The comparison of all three filamin gene paralogues revealed a highly conserved exon-intron structure with significant differences in the exons 32 of all paralogues encoding the hinge I region, as well as the insertion of a novel exon 40A in FLNC only. Gene organization does not correlate with the domain structures of the respective proteins. To improve candidate gene cloning approaches, FLNB was precisely mapped at 3p14 in an interval of 0.81 cM between WI3771 and WI6691 and FLNC at 7q32 in an interval of 2.07 cM between D7S530 and D7S649.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号