首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
DOCK180 is a guanine exchange factor of Rac1 originally identified as a protein bound to an SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130Cas, and recruits the Crk-p130Cas complex to focal adhesions. To understand the role of DOCK180 in cell adhesion and migration, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and identified ANKRD28, a protein that contains twenty-six ankyrin domain repeats. Knockdown of ANKRD28 by RNA interference reduced the velocity of migration of HeLa cells, suggesting that this protein plays a physiologic role in the DOCK180-Rac1 signaling pathway. Furthermore, knockdown of ANKRD28 was found to alter the distribution of focal adhesion proteins such as Crk, paxillin, and p130Cas. On the other hand, expression of ANKRD28, p130Cas, Crk, and DOCK180 induced hyper-phosphorylation of p130Cas, and impaired detachment of the cell membrane during migration. Consequently, cells expressing ANKRD28 exhibited multiple long cellular processes. ANKRD28 associated with DOCK180 in an SH3-dependent manner and competed with ELMO, another protein bound to the SH3 domain of DOCK180. In striking contrast to ANKRD28, overexpression of ELMO induced extensive lamellipodial protrusion around the entire circumference. These data suggest that ANKRD28 specifies the localization and the activity of the DOCK180-Rac1 pathway.  相似文献   

2.
3.
We have recently shown that protein tyrosine phosphatase 1B (PTP1B) associates with the docking protein p130Cas in 3Y1 rat fibroblasts. This interaction is mediated by a proline-rich sequence on PTP1B and the SH3 domain on p130Cas. Expression of wild-type PTP1B (WT-PTP1B), but not a catalytically competent, proline-to-alanine point mutant that cannot bind p130Cas (PA-PTP1B), causes substantial tyrosine dephosphorylation of p130Cas (F. Liu, D. E. Hill, and J. Chernoff, J. Biol. Chem. 271:31290–31295, 1996). Here we demonstrate that WT-, but not PA-PTP1B, inhibits transformation of rat 3Y1 fibroblasts by v-crk, -src, and -ras, but not by v-raf. These effects on transformation correlate with the phosphorylation status of p130Cas and two proteins that are associated with p130Cas, Paxillin and Fak. Expression of WT-PTP1B reduces formation of p130Cas-Crk complexes and inhibits mitogen-activated protein kinase activation by Src and Crk. These data show that transformation suppression by PTP1B requires a functional SH3 ligand and suggest that p130Cas may represent an important physiological target of PTP1B in cells.  相似文献   

4.
Previously we have demonstrated that focal adhesion kinase (FAK)-promoted migration on fibronectin (FN) by its overexpression in CHO cells is dependent on FAK autophosphorylation at Y397 and subsequent binding of Src to this site. In this report, we have examined the role of FAK association with Grb2 and p130Cas, two downstream events of the FAK/Src complex that could mediate integrin-stimulated activation of extracellular signal-regulated kinases (Erks). We show that a Y925F FAK mutant was able to promote cell migration as efficiently as FAK and that the transfected FAK demonstrated no detectable association with Grb2 in CHO cells. In contrast, cells expressing a FAK P712/715A mutant demonstrated a level of migration comparable to that of control cells. This mutation did not affect FAK kinase activity, autophosphorylation, or Src association but did significantly reduce p130Cas association with FAK. Furthermore, FAK expression in CHO cells increased tyrosine phosphorylation of p130Cas and its subsequent binding to several SH2 domains, which depended on both the p130Cas binding site and the Src binding site. However, we did not detect increased activation of Erks in cells expressing FAK, and the MEK inhibitor PD98059 did not decrease FAK-promoted cell migration. Finally, we show that coexpression of p130Cas further increased cell migration on FN and coexpression of the p130Cas SH3 domain alone functioned as a dominant negative mutant and decreased cell migration. Together, these results demonstrate that p130Cas, but not Grb2, is a mediator of FAK-promoted cell migration and suggest that FAK/ p130Cas complex targets downstream pathways other than Erks in mediating FAK-promoted cell migration.  相似文献   

5.
Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that regulates neurotrophin-3-induced cell migration in Schwann cells. Here we report that Dbs regulates cell motility in tumor-derived, human breast epithelial cells through activation of Cdc42 and Rac1. Cdc42 and Rac1 are activated in T47D cells that stably express onco- or proto-Dbs, and activation is dependent upon growth of the cells on collagen I. Transient suppression of expression of Cdc42 or Rac1 by small interfering RNAs attenuates Dbs-enhanced motility. Both onco- and proto-Dbs-enhanced motility correlates with an increase in tyrosine phosphorylation of focal adhesion kinase on Tyr-397 and p130Cas on Tyr-410 and an increase in the abundance of the Crk·p130Cas complex. Suppression of expression of Cdc42 or its effector, Ack1, reduces tyrosine phosphorylation of focal adhesion kinase and p130Cas and disrupts the Crk·p130Cas complex. We further determined that suppression of expression of Cdc42, Ack1, p130Cas, or Crk reduces Rac1 activation and cell motility in Dbs-expressing cells to a level comparable with that in vector cells. Therefore, a cascade of activation of Cdc42 and Rac1 by Dbs through the Cdc42 effector Ack1 and the Crk·p130Cas complex is established. Suppression of the expression of endogenous Dbs reduces cell motility in both T47D cells and MDA-MB-231 cells, which correlates with the down-regulation of Cdc42 activity. This suggests that Dbs activates Cdc42 in these two human breast cancer cell lines and that the normal function of Dbs may be required to support cell movement.Rho GTPases are a subfamily of the Ras superfamily of small signaling molecules that are widely expressed in mammalian cells (1). RhoA, Cdc42, and Rac1 are the most extensively studied members of the Rho GTPase family, and each plays a prominent and discrete role in cell migration (2, 3). Cdc42 promotes the formation of filopodia and is required to establish cell polarity (35); Rac1 promotes the formation of lamellipodia at the leading edge of motile cells (6), and RhoA promotes the formation of stress fibers which generate the traction forces needed to retract the cell tail and move the cell body beyond the leading edge (7, 8). Consistent with this important role in cell motility, RhoA, Cdc42, and Rac1 are often overexpressed in human tumors including breast, lung, and colon (9), and overexpression of constitutively active RhoA, Cdc42, or Rac1 increases cell migration and invasion (2, 10, 11).The spatiotemporal regulation of Rho GTPase activity is tightly controlled by three classes of proteins. Rho-specific guanine nucleotide exchange factors (RhoGEFs)2 activate Rho proteins by facilitating the exchange of GDP for GTP; Rho GTPase-activating proteins (RhoGAPs) stimulate the intrinsic rate of hydrolysis of Rho proteins, thus converting them into their inactive state; Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) compete with RhoGEFs for binding to GDP-bound Rho proteins and sequester Rho in the inactive state (12).Dbs was identified in the screen for proteins whose overexpression cause malignant growth in murine fibroblasts (13, 14). The full-length Dbs protein (proto-Dbs) is a RhoGEF family member which contains multiple recognizable domains (Fig. 1A) including a Sec14-like domain, spectrin-like repeats, a RhoGEF domain (includes a DH and PH domain), and an SH3 domain (13). The original oncogenic version of Dbs that was identified (amino acid residues 525–1097; designated onco-Dbs) contains the RhoGEF domain alone. When expressed in murine fibroblasts, the transforming and catalytic activity of Dbs is subject to autoinhibition that is mediated by the NH2-terminal Sec14 domain (15). Although the endogenous function of Dbs is not known, recent studies suggest that Dbs and the Rac-specific exchange factor Tiam1 regulate neurotrophin-stimulated cell migration in Schwann cells through activation of Cdc42 and Rac1, respectively (16, 17).Open in a separate windowFIGURE 1.Onco-Dbs and proto-Dbs induce cell migration in tumor-derived breast epithelial cells. A, domain structure of the onco-Dbs and proto-Dbs proteins (Sec14 = Sec14-like domain; Spec = Spectrin-like repeats; DH = Dbl homology domain; PH = pleckstrin homology domain; SH3 = Src homology 3 domain). B, stable expression of HA-epitope-tagged onco-Dbs (Mr = 65) and proto-Dbs (Mr = 129 kDa) was confirmed by Western blot using an anti-HA antibody. Three independent sets of cell lines were generated. C, T47D cells stably expressing vector (Vec), onco-Dbs, or proto-Dbs were compared in a transwell motility assay on filters pre-coated with collagen I. The motility of cells stably expressing onco-Dbs or proto-Dbs is expressed relative to that of cells stably expressing vector. Data are represented as the mean ± S.D. of three independent experiments performed in triplicate. D, T47D cells stably expressing vector, onco-Dbs, or proto-Dbs were cultured to monolayer on dishes coated with poly-l-lysine or collagen I, as indicated. Cells were serum-starved overnight, and then the surface of the plate was scraped. Migration of cells at the wound edge was monitored and photographed at 18 h. Representative images are shown. E, growth curves of T47D cells stably expressing vector, onco-Dbs, or proto-Dbs. Cells were cultured in triplicate on poly-l-lysine (filled symbols) or on dishes pre-coated with collagen I (open symbols) and counted on the indicated days. Data shown are representative of three independent experiments.Conversion of Rho proteins to their active GTP-bound state allows them to interact with effector signaling molecules. Ack1 is a nonreceptor-tyrosine kinase that binds to active Cdc42 but not Rac1 or RhoA (18, 19). Activated Ack1 is overexpressed in primary tumors and cancer cell lines and has been implicated in cancer metastasis (20). Recent studies have identified a signaling complex that regulates the motility of human breast epithelial cells that contains Cdc42, Ack1, p130Cas, and Crk (21). Ack1 and p130Cas interact through their respective SH3 domains, and Ack1 phosphorylates p130Cas in a collagen I-dependent manner. p130Cas was first identified as a hyperphosphorylated adapter protein in cells transformed by v-Src and v-Crk (22, 23). Further studies showed that p130Cas is associated with both cellular Src and Crk in a tyrosine phosphorylation-dependent manner (24, 25). Focal adhesion kinase (FAK) binds to the NH2 terminus of p130Cas and phosphorylates the COOH terminus in a region that is involved in p130Cas binding to Src (26). The binding of Crk to p130Cas recruits binding partners to the SH3 domain of Crk, including C3G and DOCK180, which activate Rap1 and Rac1, respectively (2731). Thus, formation of the Crk·p130Cas complex is considered to be a molecular switch that can induce cell migration by activating Rac1 (32).Here we show that both proto-Dbs and onco-Dbs increase cell migration in human breast adenocarcinoma cells in a collagen I-dependent manner. Increased motility is dependent upon the activation of Rac1 and Cdc42 and is mediated by the assembly of Crk·p130Cas complexes. Suppression of endogenous Dbs expression in human tumor-derived breast epithelial cells limits cell motility, suggesting that Dbs may be a critical regulator of cell behavior in breast cancer.  相似文献   

6.
HEF1, p130Cas, and Efs/Sin constitute a family of multidomain docking proteins that have been implicated in coordinating the regulation of cell adhesion. Each of these proteins contains an SH3 domain, conferring association with focal adhesion kinase; a domain rich in SH2-binding sites, phosphorylated by or associating with a number of oncoproteins, including Abl, Crk, Fyn, and others; and a highly conserved carboxy-terminal domain. In this report, we show that the HEF1 protein is processed in a complex manner, with transfection of a single cDNA resulting in the generation of at least four protein species, p115HEF1, p105HEF1, p65HEF1, and p55HEF1. We show that p115HEF1 and p105HEF1 are different phosphorylation states of the full-length HEF1. p55HEF1, however, encompasses only the amino-terminal end of the HEF1 coding sequence and arises via cleavage of full-length HEF1 at a caspase consensus site. We find that HEF1 proteins are abundantly expressed in epithelial cells derived from breast and lung tissue in addition to the lymphoid cells in which they have been predominantly studied to date. In MCF-7 cells, we find that expression of the endogenous HEF1 proteins is cell cycle regulated, with p105HEF1 and p115HEF1 being rapidly upregulated upon induction of cell growth, whereas p55HEF1 is produced specifically at mitosis. While p105HEF1 and p115HEF1 are predominantly cytoplasmic and localize to focal adhesions, p55HEF1 unexpectedly is shown to associate with the mitotic spindle. In support of a role at the spindle, two-hybrid library screening with HEF1 identifies the human homolog of the G2/M spindle-regulatory protein Dim1p as a specific interactor with a region of HEF1 encompassed in p55HEF1. In sum, these data suggest that HEF1 may directly connect morphological control-related signals with cell cycle regulation and thus play a role in pathways leading to the progression of cancer.  相似文献   

7.
Elevated expression of p130Cas/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130Cas signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM‐R cells, which were established by long‐term exposure of estrogen (E2)‐dependent MCF‐7 cells to tamoxifen, displayed elevated levels of total and activated p130Cas. Here we have investigated the effects of p130Cas inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130Cas, a phosphorylated substrate domain of p130Cas, that acts as a dominant‐negative (DN) p130Cas molecule by blocking signal transduction downstream of the p130Cas substrate domain, as well as knockdown by siRNA was employed. Interference with p130Cas signaling/expression induced morphological changes, which were consistent with a more epithelial‐like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3‐kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti‐apoptotic protein Bcl‐2. Importantly, these changes re‐sensitized TAM‐R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers. J. Cell. Biochem. 107: 364–375, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.

Background  

The adaptor protein p130 Cas (Cas) has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals.  相似文献   

9.
Elevated levels of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130Cas promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130Cas protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130Cas-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130Cas exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130Cas on cell biology and therefore will be the target of future studies.  相似文献   

10.
Genetic studies in Caenorhabditis elegans identified an evolutionarily conserved CED-2 (CrkII), CED-5 (DOCK180), CED-12 (ELMO), CED-10 (Rac1) module important for cell migration and phagocytosis of apoptotic cells. Previous studies have shown that DOCK180 and ELMO comprise an unconventional bipartite Dbl homology domain-independent Rac guanine nucleotide exchange factor (Rac-GEF); but it is still unclear how CrkII functions in Rac-GEF activity. In this study, we have characterized a unique function of CrkII in phagocytosis and Rac activation mediated by the C-terminal SH3 domain, a region of CrkII that has no clear cellular or biochemical function. We found that mutations that disrupt the C-terminal SH3 domain of CrkII (CrkII-SH3-C) abrogate engulfment of apoptotic cells and impair cell spreading on extracellular matrix. Surprisingly, despite the effects on engulfment, W276K CrkII strongly potentiated Rac-GTP loading when ectopically expressed in HEK 293T cells. Contrary to the effects of the true dominant negative SH2 domain mutants (R38K CrkII) and SH3-N domain mutants (W170K CrkII) that prevent macromolecular assembly of signaling proteins, W276K CrkII increases association between DOCK180 and CrkII as well as constitutive tethering of the Crk/DOCK180/ELMO protein complex that interacted with RhoG. Our results indicate that while N-terminal SH3 of CrkII promotes assembly between CrkII and DOCK180, the C-terminal SH3 of CrkII regulates the stability and turnover of the DOCK180/ELMO complex. Studies with W276K CrkII may offer a unique opportunity to study the structure and function of the DOCK180/ELMO Rac-GEF.  相似文献   

11.
Members of the novel SH2-containing protein (NSP3) and Crk-associated substrate (p130Cas) protein families form a multi-domain signalling platforms that mediate cell signalling process. We analysed the damaging consequences of three mutations, each from NSP3 (NSP3L469R, NSP3L623E, NSP3R627E) and p130Cas (p130CasF794R, p130CasL787E, p130CasD797R) protein with respect to their native biological partners. Mutations depicted notable loss in interaction affinity towards their corresponding biological partners. NSP3L469R and p130CasD797R mutations were predicted as most prominent in docking analysis. Molecular dynamics (MD) studies were conducted to evaluate structural consequences of most prominent mutation in NSP3 and p130Cas obtained from the docking analysis. MD analysis confirmed that mutation in NSP3L469R and p130CasD797R showed significant structural deviation, changes in conformations and increased flexibility, which in turn affected the binding affinity with their biological partners. Moreover, the root mean square fluctuation has indicated a rise in fluctuation of residues involved in moderate interaction acquired between the NSP3 and p130Cas. It has significantly affected the binding interaction in mutant complexes. The results obtained in this work present a detailed overview of molecular mechanisms involved in the loss of cell signalling associated with NSP3 and p130Cas protein.  相似文献   

12.
Human DOCK180, which was originally identified as a major protein bound to the Crk oncogene product, is an archetype of the CDM family of proteins, including Ced-5 of Caenorhabditis elegans and Mbc of Drosophila melanogaster. After DOCK180, at least three putative human proteins that manifest high amino acid sequence similarity to DOCK180 have been registered in the GenBank/EMBL database. We have designated one of them, KIAA0209, as DOCK2 and characterize here. DOCK2 mRNA was expressed mostly in peripheral blood cells, followed by slight expression in the spleen and thymus, whereas DOCK180 was expressed in all tissues tested except in peripheral blood cells. Immunostaining of human cadaver tissues revealed that the expression of DOCK2 was limited to the lymphocytes and macrophages of various organs. DOCK2 bound to and activated Rac1, as did DOCK180; however, DOCK2 did not bind to CrkII, which transduces signals at focal adhesions. Thus, DOCK180 and DOCK2 are regulators of Rac and function in adherent and non-adherent cells, respectively.  相似文献   

13.
Exoenzyme T (ExoT) is a bifunctional type III cytotoxin of Pseudomonas aeruginosa that possesses both Rho GTPase-activating protein and ADP-ribosyltransferase activities. The ADP-ribosyltransferase activity of ExoT stimulated depolymerization of the actin cytoskeleton independent of Rho GTPase-activating protein function, and ExoT was subsequently shown to ADP-ribosylate Crk (CT10 regulator of kinase)-I and Crk-II. Crk proteins are eukaryotic adaptor proteins comprising SH2 and SH3 domains that are components of the integrin signaling pathway leading to Rac1 and Rap1 functions. Mass spectroscopic analysis identified Arg20 as the site of ADP-ribosylation by ExoT. Arg20 is a conserved residue located within the SH2 domain that is required for interactions with upstream signaling molecules such as paxillin and p130cas. Glutathione S-transferase pull-down and far Western assays showed that ADP-ribosylated Crk-I or Crk-I(R20K) failed to bind p130cas or paxillin. This indicates that ADP-ribosylation inhibited the direct interaction of Crk with these focal adhesion proteins. Overexpression of wild-type Crk-I reduced cell rounding by ExoT, whereas expression of dominant-active Rac1 interfered with the ability of ExoT to round cells. Thus, the ADP-ribosylation of Crk uncouples integrin signaling by direct inhibition of the binding of Crk to focal adhesion proteins.  相似文献   

14.
The eukaryotic Engulfment and CellMotility (ELMO) proteins form an evolutionary conserved family of key regulators which play a central role in Rho-dependent biological processes such as engulfment and cell motility/migration. ELMO proteins interact with a subset of Downstream of Crk (DOCK) family members, a new type of guanine exchange factors (GEF) for Rac and cdc42 GTPases. The physiological function of DOCK is to facilitate actin remodeling, a process which occurs only in presence of ELMO. Several studies have determined that the last 200 C-terminal residues of ELMO1 and the first 180 N-terminal residues of DOCK180 are responsible for the ELMO-DOCK interaction. However, the precise role of the different domains and motifs identified in these regions has remained elusive. Divergent functional, biochemical and structural data have been reported regarding the contribution of the C-terminal end of ELMO, comprising its polyproline motif, and of the DOCK SH3 domain. In the present study, we have investigated the contribution of the C-terminal end of ELMO1 to the interaction between ELMO1 and the SH3 domain of DOCK180 using nuclear magnetic resonance spectroscopy and surface plasmon resonance. Our data presented here demonstrate the ability of the SH3 domain of DOCK180 to interact with ELMO1, regardless of the presence of the polyproline-containing C-terminal end. However, the presence of the polyproline region leads to a significant increase in the half-life of the ELMO1-DOCK180 complex, along with a moderate increase on the affinity.  相似文献   

15.
The cellular homologs of the v-Crk oncogene product are composed exclusively of Src homology region 2 (SH2) and SH3 domains. v-Crk overexpression in fibroblasts causes cell transformation and elevated tyrosine phosphorylation of specific cellular proteins. Among these proteins is a 130-kDa protein, identified as p130cas, that forms a stable complex in vivo with v-Crk. We have explored the role of endogenous Crk proteins in Bcr-Abl-transformed cells. In the K562 human chronic myelogenous leukemia cell line, p130cas is not tyrosine phosphorylated or bound to Crk. Instead, Crk proteins predominantly associate with the tyrosine-phosphorylated proto-oncogene product of Cbl. In vitro analysis showed that this interaction is mediated by the SH2 domain of Crk and can be inhibited with a phosphopeptide containing the Crk-SH2 binding motif. In NIH 3T3 cells transformed by Bcr-Abl, c-Cbl becomes strongly tyrosine phosphorylated and associates with c-Crk. The complex between c-Crk and c-Cbl is also seen upon T-cell receptor cross-linking or with the transforming, tyrosine-phosphorylated c-Cbl. These results indicate that Crk binds to c-Cbl in a tyrosine phosphorylation-dependent manner, suggesting a physiological role for the Crk-c-Cbl complex in Bcr-Abl tyrosine phosphorylation-mediated transformation.  相似文献   

16.
We have previously demonstrated that lysyl oxidase (LOX) is expressed in invasive breast cancer cells compared to poorly invasive cells. Additionally, we have recently shown that LOX regulates cell migration, a key step in the invasion process, through a hydrogen peroxide-dependent mechanism involving the focal adhesion kinase (FAK)/Src signaling complex. Here we further elucidate the role of LOX in cell motility/migration by examining the role of LOX in actin filament polymerization. We demonstrate that inhibition of LOX leads to an increase in phalloidin staining, directly associated with an increase in actin stress fiber formation. This increase in staining was confirmed by activity assays showing an increase in Rho activity with decreased LOX activity. Additionally, Rac and Cdc42 activity decreased with the reduction in LOX activity. Taken together, these data demonstrate a loss of a motogenic phenotype with decreased LOX activity. Finally, in order to elucidate the mechanism by which LOX regulates actin polymerization, we have demonstrated that LOX facilitates p130(Cas) phosphorylation, which allows for the binding to CAS related kinase (Crk) and formation of the p130(Cas)/Crk/DOCK180 signaling complex. Formation of this complex leads to an increase in Rac-GTP, which decreases actin stress fiber formation and increases formation of lamellipodium. These data demonstrate that LOX regulates cell motility/migration through changes in actin filament polymerization, which involve the regulation of the p130(Cas)/Crk/DOCK180 signaling pathway. Elucidating the role of LOX in the regulation of cell motility will allow the development of more effective therapeutic strategies to treat invasive/metastatic breast cancer.  相似文献   

17.
Cell migration and wound contraction requires assembly of actin into a functional myosin motor unit capable of generating force. However, cell migration also involves formation of actin-containing membrane ruffles. Evidence is provided that actin-myosin assembly and membrane ruffling are regulated by distinct signaling pathways in the migratory cell. Interaction of cells with extracellular matrix proteins or cytokines promote cell migration through activation of the MAP kinases ERK1 and ERK2 as well as the molecular coupling of the adaptor proteins p130CAS and c-CrkII. ERK signaling is independent of CAS/Crk coupling and regulates myosin light chain phosphorylation leading to actin-myosin assembly during cell migration and cell-mediated contraction of a collagen matrix. In contrast, membrane ruffling, but not cell contraction, requires Rac GTPase activity and the formation of a CAS/Crk complex that functions in the context of the Rac activating protein DOCK180. Thus, during cell migration ERK and CAS/Crk coupling operate as components of distinct signaling pathways that control actin assembly into myosin motors and membrane ruffles, respectively.  相似文献   

18.
The effect of platelet-activating factor (PAF) on protein tyrosine phosphorylation was studied in rat hippocampal slices. PAF caused an increase in the tyrosine phosphorylation of two phosphoproteins, which we identified by immunoprecipitation assays as the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. The PAF effect was time- and dose-dependent. In addition, the involvement of PAF receptor was demonstrated by using PCA-4248, a specific receptor antagonist. When NO synthase was inhibited by NG-monomethyl-L-arginine (L-NMA), PAF-stimulated protein tyrosine phosphorylation was inhibited. In conclusion, our results indicate that PAF increased the tyrosine phosphorylation of both p125FAK and p130Cas proteins by the production of NO in hippocampus, suggesting that PAF may play a role in the functioning of this cerebral area.  相似文献   

19.
Abstract. Carcinoma cells selected for their ability to migrate in vitro showed enhanced invasive properties in vivo. Associated with this induction of migration was the anchorage-dependent phosphorylation of p130CAS (Crk-associated substrate), leading to its coupling to the adaptor protein c-CrkII (Crk). In fact, expression of CAS or its adaptor protein partner Crk was sufficient to promote cell migration, and this depended on CAS tyrosine phosphorylation facilitating an SH2-mediated complex with Crk. Cytokine-stimulated cell migration was blocked by CAS lacking the Crk binding site or Crk containing a mutant SH2 domain. This migration response was characterized by CAS/Crk localization to membrane ruffles and blocked by the dominant-negative GTPase, Rac, but not Ras. Thus, CAS/Crk assembly serves as a “molecular switch” for the induction of cell migration and appears to contribute to the invasive property of tumors.  相似文献   

20.
Tu Y  Kucik DF  Wu C 《FEBS letters》2001,491(3):193-199
Nck-2 is a newly identified adapter protein comprising three N-terminal SH3 domains and one C-terminal SH2 domain. We have identified in a yeast two-hybrid screen DOCK180, a signaling protein implicated in the regulation of membrane ruffling and migration, as a binding protein for Nck-2. Surface plasmon resonance analyses reveal that the second and the third SH3 domains interact with the C-terminal region of DOCK180. The interactions mediated by the individual SH3 domains, however, are much weaker than that of the full length Nck-2. Furthermore, a point mutation that inactivates the second or the third SH3 domain dramatically reduced the interaction of Nck-2 with DOCK180, suggesting that both SH3 domains contribute to the DOCK180 binding. A major Nck-2 binding site, which is recognized primarily by the third SH3 domain, has been mapped to residues 1819-1836 of DOCK180. Two additional, albeit much weaker, Nck-2 SH3 binding sites are located to DOCK180 residues 1793-1810 and 1835-1852 respectively. Consistent with the mutational studies, kinetic analyses by surface plasmon resonance suggest that two binding events with equilibrium dissociation constants of 4.15+/-1.9x10(-7) M and 3.24+/-1.9x10(-9) M mediate the binding of GST-Nck-2 to GST fusion protein containing the C-terminal region of DOCK180. These studies identify a novel interaction between Nck-2 and DOCK180. Furthermore, they provide a detailed analysis of a protein complex formation mediated by multiple SH3 domains revealing that tandem SH3 domains significantly enhance the weak interactions mediated by each individual SH3 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号